Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chịu bạn ạ
k mình nha
Chúc bạn học giỏi
Mình cảm ơn bạn nhiều
Cái này bạn phải đến lớp 8 để sử dụng đường trung bình mới giải đc :)
-Giải =cách đừng trung bình dễ lắm bạn ạ
Các trường hợp bằng nhau của tam giác vuông:
-Hai cạnh góc vuông
-Cạnh góc vuông-góc nhọn kề
-Cạnh huyền-góc nhọn
-Cạnh huyền-cạnh góc vuông
Các trường hợp bằng nhau của tam giác thường là:
+) cạnh.cạnh.cạnh (c.c.c)
+) cạnh.góc.cạnh (c.g.c)
+) Góc.cạnh.góc (g.c.g)
Các trường hợp bằng nhau trong tam giác vuông là:
+) Hai cạnh góc vuông
+) Cạnh góc vuông và một góc nhọn kề cạnh ấy
+) Cạnh huyền và một góc nhọn kề cạnh ấy
+) Cạnh huyền và một cạnh góc vuông
Mik trả lời có đúng ko ạ nếu đúng bạn k nha
Các trường hợp bằng nhau của tam giác thường là:
+) cạnh.cạnh.cạnh (c.c.c)
+) cạnh.góc.cạnh (c.g.c)
+) Góc.cạnh.góc (g.c.g)
Các trường hợp bằng nhau trong tam giác vuông là:
+) Hai cạnh góc vuông
+) Cạnh góc vuông và một góc nhọn kề cạnh ấy
+) Cạnh huyền và một góc nhọn kề cạnh ấy
+) Cạnh huyền và một cạnh góc vuông
Hình 63
Ta có:
Và AB = MI; AC = IN; BC = MN
Nên ΔABC = ΔIMN
Hình 64 :
ΔPQR có:
Và QH = RP, HR = PQ, QR ( cạnh chung )
Nên ΔHQR = ΔPRQ
a) ∆OAD và ∆OCB có: OA= OC(gt)
∠O chung
OB = OD (gt)
OAD = OCB (c.g.c) AD = BC
Nên ∆OAD=∆OCB(c.g.c)
suy ra AD=BC.
b)
Ta có ∠A1 = 1800 – ∠A2
∠C1 = 1800 – ∠C2
mµ ∠A2 = ∠C2 do ΔOAD = ΔOCB (c/m trên)
⇒ ∠A1 = ∠C1
Ta có OB = OA + AB
OD = OC + CD mà OB = OD, OA = OC ⇒ AB = CD
Xét ΔEAB = ΔECD có:
∠A1 = ∠C1 (c/m trên)
AB = CD (c/m trên)
∠B1 = ∠D1 (ΔOCB = ΔOAD)
⇒ ΔEAB = ΔECD (g.c.g)
c) Xét ΔOBE và ΔODE có:
OB = OD (GT)
OE chung
AE = CE (ΔAEB = ΔCED) ⇒ΔOBE = ΔODE (c.c.c)
⇒ ∠AOE = ∠COE ⇒ OE là phân giác của góc ∠xOy.