Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đăng từng câu một thì sẽ có người giúp bạn đấy!
Tick cho mình nhé!
a. \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left[3\left(2x-1\right)-5\left(x+8\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(6x-3-5x-40\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-43\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=43\end{matrix}\right.\)
b. \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow-\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=-2\end{matrix}\right.\)
c. \(\left(2x+1\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow3x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
d. \(2x^3+3x^2-32x=48\)
\(\Leftrightarrow2x^3+3x^2-32x-48=0\)
\(\Leftrightarrow\left(2x^3-8x^2\right)+\left(5x^2-20x\right)-\left(12x-48\right)=0\)
\(\Leftrightarrow2x^2\left(x-4\right)+5x\left(x-4\right)-12\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x^2+5x-12\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left[\left(2x^2+8x\right)-\left(3x+12\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left[2x\left(x+4\right)-3\left(x+4\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=\frac{3}{2}\end{matrix}\right.\)
e. \(x^2+2x-15=0\)
\(\Leftrightarrow\left(x^2-3x\right)+\left(5x-15\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
a)⇔ 2x-1/2 -1 = x2+x-3/x-1 - 5x-2/2.(x-1)
⇔ ( 2x-1 ).(x-1) - 2.(x-1)=2.(x2+x-3) - (5x-2)
⇔2x2-3x+1-2x+2=2x2+2x-6-5x+2
⇔2x2-3x+1-2x+2-2x2-2x+6+5x-2=0
⇔-2x+7=0
⇔x=7/2
Vậy ....
b) ⇔3.(x-1)2-(x-1).(x+1)=0
⇔ (x-1).(3x-3-x-1)=0
⇔ (x-1).(2x-4)=0
⇔x=1 hoặc x=2
Vậy....
c) ⇔ 4x2-4x+x-1=0
⇔4x(x-1)+(x-1)=0
⇔(x-1)(4x+1)=0
⇔x=1 hoặc x=-1/4
Vậy....
d) ⇔4x2-4x-3=0
⇔ 4x2-6x+2x-3 = 0
⇔ 2x( 2x-3)+(2x-3)=0
⇔ (2x+3)(2x+1)=0
⇔ x=-3/2 hoặc x=-1/2
vậy ....
\(a,\frac{2x-1}{2}-1=\frac{x^2+x-3}{x-1}-\frac{5x-2}{2-2x}ĐKXĐ:x\ne1\)
\(\left(2x-1\right)\left(x-1\right)\left(1-x\right)-2\left(x-1\right)\left(1-x\right)=2\left(x^2+x-3\right)\left(1-x\right)-\left(5x-2\right)\left(x-1\right)\)
\(7x^2-8x+3=-5x^2+15x-8\)
\(7x^2-8x+3+5x^2-15x+8=0\)
\(12x^2-23x+11=0\)
\(\left(12x-11\right)\left(x-1\right)=0\)
\(\left[{}\begin{matrix}12x=11\\x=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\frac{11}{12}\\x=1\end{matrix}\right.\)Theo ĐKXĐ => x= \(\frac{11}{12}\)
a, (3x-1)2 - (x+3)2 = 0
<=> [(3x-1)-(x+3)][(3x-1)+(x+3)] = 0
<=> (3x-1-x-3)(3x-1+x+3) = 0
<=> (2x-4)(4x+2) = 0
=> 2x-4=0 hoặc 4x+2=0
=> 2x =4 hoặc 4x = -2
=> x = 2 hoặc x = \(\frac{-1}{2}\)
\(\begin{array}{l} a){\left( {3x - 1} \right)^2} - {\left( {x + 3} \right)^2} = 0\\ \Leftrightarrow \left( {3x - 1 + x + 3} \right)\left[ {3x - 1 - x - 3} \right] = 0\\ \Leftrightarrow \left( {4x + 2} \right)\left( {2x - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} 4x + 2 = 0\\ 2x - 4 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = - \dfrac{1}{2}\\ x = 2 \end{array} \right.\\ b){x^3} - \dfrac{x}{{49}} = 0\\ \Leftrightarrow 49{x^3} - x = 0\\ \Leftrightarrow x\left( {49{x^2} - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ 49{x^2} - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \pm \dfrac{1}{7} \end{array} \right.\\ c){x^2} - 7x + 12 = 0\\ \Leftrightarrow {x^2} - 3x - 4x + 12 = 0\\ \Leftrightarrow x\left( {x - 3} \right) - 4\left( {x - 3} \right) = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {x - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 3 = 0\\ x - 4 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 3\\ x = 4 \end{array} \right.\\ d)4{x^2} - 3x - 1 = 0\\ \Leftrightarrow 4{x^2} + x - 4x - 1 = 0\\ \Leftrightarrow x\left( {4x + 1} \right) - \left( {4x + 1} \right) = 0\\ \Leftrightarrow \left( {4x + 1} \right)\left( {x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} 4x + 1 = 0\\ x - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = - \dfrac{1}{4}\\ x = 1 \end{array} \right.\\ e){x^3} - 2x - 4 = 0\\ \Leftrightarrow {x^3} - 4x + 2x - 4 = 0\\ \Leftrightarrow x\left( {{x^2} - 4} \right) + 2\left( {x - 2} \right) = 0\\ \Leftrightarrow x\left( {x - 2} \right)\left( {x + 2} \right) + 2\left( {x - 2} \right) = 0\\ \Leftrightarrow \left( {x - 2} \right)\left[ {x\left( {x + 2} \right) + 2} \right] = 0\\ \Leftrightarrow \left( {x - 2} \right)\left( {{x^2} + 2x + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 2 = 0\\ {x^2} + 2x + 2 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\\ {x^2} + 2x + 2x = 0\left( {VN} \right) \end{array} \right.\\ f){x^3} + 8{x^2} + 17x + 10 = 0\\ \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} + 7x + 10} \right) = 0\\ \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} + 5x + 2x + 10} \right) = 0\\ \Leftrightarrow \left( {x + 1} \right)\left[ {x\left( {x + 5} \right) + 2\left( {x + 5} \right)} \right] = 0\\ \Leftrightarrow \left( {x + 1} \right)\left( {x + 5} \right)\left( {x + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x + 1 = 0\\ x + 5 = 0\\ x + 2 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = - 5\\ x = - 2 \end{array} \right. \end{array}\)
a, 2 (3x - 1) = x + 3
<=> 6x - 2 - x - 3 = 0
<=> 5x - 5 = 0
<=> x = 1.
b, x2 + 4x + 3 = 0
<=> x2 + 3x + x + 3 = 0
<=> x (x + 3) + (x + 3) = 0
<=> (x + 1) (x + 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)
c, |x - 13| = 15
\(\Leftrightarrow\orbr{\begin{cases}x-13=15\\x-13=-15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=28\\x=-2\end{cases}}\)
Trả lời:
a, 2 ( 3x - 1 ) = x + 3
<=> 6x - 2 = x + 3
<=> 6x - x = 3 + 2
<=> 5x = 5
<=> x = 1
Vậy x = 1 là nghiệm của pt.
b, x2 + 4x + 3 = 0
<=> x2 + x + 3x + 3 = 0
<=> ( x2 + x ) + ( 3x + 3 ) = 0
<=> x ( x + 1 ) + 3 ( x + 1 ) = 0
<=> ( x + 3 ) ( x + 1 ) = 0
<=> x + 3 = 0 hoặc x + 1 = 0
<=> x = - 3 hoặc x = - 1
Vậy x = - 3; x = - 1 là nghiệm của pt.
c, | x - 13 | = 15
=> x - 13 = 15 hoặc x - 13 = - 15
<=> x = 28 hoặc x = - 2
Vậy x = 28; x = - 2 là nghiệm của pt.