K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2019

a, A=x(x-6)+10

=x2-6x+10=(x2-2.3.x+9)+10-9

=(x-3)2+1

Ta có : \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0với\forall x\\1>0\end{matrix}\right.\)

\(\Rightarrow\left(x-3\right)^2+1>0với\forall x\)

Vậy A>0 với \(\forall x\)

b, B=x2-2x+9y2-6y+3

= (x2-2x)+(9y2-6y)+3

=(x2-2.\(\frac{1}{2}x+\frac{1}{4}\))+(9y2-2.3y.1+1)+3-1-\(\frac{1}{4}\)

=(x-\(\frac{1}{4}\))2+\(\left(3y-1\right)^2+\frac{7}{4}\)

ta có : \(\left\{{}\begin{matrix}\left(x-\frac{1}{4}\right)^2\ge0với\forall x\\\left(3y-1\right)^2\ge0với\forall x\\\frac{7}{4}>0\end{matrix}\right.\)

\(\Rightarrow\left(x-\frac{1}{4}\right)^2+\left(3y-1\right)^2+\frac{7}{4}>0với\forall x\)

Vậy B>0 với \(\forall x\)

2 tháng 8 2017

ta có

B=(x^2-2x+1)+[(3y)^2-6y+1]+1

B=(x-1)^2+(3y-1)^2+1

Mả (x-1)^2+(3y_1)^2 luôn luôn >=0

Vậy B mìn =1khi và chỉ khi x=1 va y=1/3

2 tháng 8 2017

À không cần min bạn nhé. Dù sao cũng cảm ơn.

19 tháng 6 2016

\(A=x\left(x-6\right)+10=x^2-6x+10\)

   \(=\left(x-3\right)^2+1>0\) với mọi x

\(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

    \(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x;y

9 tháng 8 2017

A= x^2-6x+10

A=x^2-3x-3x+9+1

A=x(x-3)-3(x-3)+1

A=(x-3)(x-3)+1

A=(x-3)^2+1

Vì (x-3)^2 \(\ge\)0\(\forall x\)

->(x-3)^2+1\(\ge\)1

=>ĐPCM

16 tháng 7 2020

1. a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)

Vì \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow\left(x-3\right)^2+1\ge1\)

hay \(A\ge1\)\(\Rightarrow\)A luôn dương ( đpcm )

b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(=\left(x-1\right)^2+\left(3y-1\right)^2+1\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(3y-1\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\forall x,y\)

hay \(B\ge1\)\(\Rightarrow\)B luôn dương ( đpcm )

23 tháng 8 2018

+) ta có : \(A=x\left(x-6\right)+10=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\ge1>0\forall x\) \(\Rightarrow\) (đpcm)

+) ta có : \(B=x^2-2x+9y^2-6y+3=x^2-2x+1+9y^2-6y+1+1\)

\(=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1>0\forall x;y\) \(\Rightarrow\) (đpcm)

23 tháng 8 2018

thankshaha

19 tháng 8 2020

+) \(A=x\left(x-6\right)+10\)

\(A=x^2-6x+10\)

\(A=x^2-6x+9+1\)

\(A=\left(x-3\right)^2+1\ge1\)

Vậy.....

+) \(B=x^2-2x+9y^2-6y+3\)

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)

Vậy .....

19 tháng 8 2020

thanks bạn nhìu

18 tháng 3 2020

A = x(x - 6) + 10

A = x^2 - 6x + 9 + 1

A = (x - 3)^2 + 1 > 1

B = x^2 - 2x + 9y^2 - 6y + 3

B = (x^2 - 2x + 1) + (9y^2 - 6y + 1) + 1

B = (x - 1)^2 + (3y - 1)^2 + 1 > 1

25 tháng 5 2017

A = x(x - 6) + 10

A = x2 - 6x + 10

A = x2 - 2.3.x + 32 + 1

A = (x - 3)2 + 1 \(\ge1\)

=> A luôn dương

25 tháng 5 2017

Bạn Kurosaki Akatsu làm ý a đúng rồi đấy!

B = x2 - 2x + 9y2 - 6y + 3

   = (x2 - 2x + 1) + (9y2 - 6y + 1) + 1

   = (x - 1)2 +  [ (3y)2 - 2.3y.1 + 12)] + 1

   = (x - 1)2 + (3y - 1)2 + 1

Vì (x - 1)2 và (3y - 1)luôn lớn hơn hoặc bằng 0 với mọi x, y

=> (x - 1)2 + (3y - 1)2 + 1 > 0 với mọi xy

  Vậy biểu thức luôn dương

   

24 tháng 6 2017

Phân thức đại số

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)