giải hộ mình trắc nghiệm
 

 

#Hỏi cộng đồng OLM #Toán lớp 7
3
10 tháng 9 2023

gải thích hộ với ạ

2:

ΔABC,ΔABD đều có 3 cạnh bằng nhau

=>AB=BC=AC và AB=BD=AD

=>AB=BC=AC=DB=AD

Xét ΔACD và ΔBCD có

AC=BC

CD chung

AD=BD

=>ΔACD=ΔBCD

=>góc ACD=góc BCD

=>CD là phân giác của góc ACB

1:

a: Xét ΔABD và ΔCDB có

AB=CD

BD chung

AD=BC

=>ΔABD=ΔCDB

b: ΔABD=ΔCDB

=>góc ADB=góc CBD

 

Em có ý kiến gì về hai ý kiến trên?

1
18 tháng 9 2023

Em thấy bạn Vuông nói đúng

Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.

Ví dụ:

\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh

2
10 tháng 9

Kết luận của định lý ứng với hình vẽ là:

\(\hat{tOz}\) = 90\(^0\)

Kết luận của định lí ứng với hình vẽ sẽ là Ot⊥Oz

1

Bài 2:

a: \(A=\frac17+\frac{1}{7^2}+\cdots+\frac{1}{7^{100}}\)

=>\(7A=1+\frac17+\cdots+\frac{1}{7^{99}}\)

=>\(7A-A=1+\frac17+\cdots+\frac{1}{7^{99}}-\frac17-\frac{1}{7^2}-\cdots-\frac{1}{7^{100}}\)

=>\(6A=1-\frac{1}{7^{100}}=\frac{7^{100}-1}{7^{100}}\)

=>\(A=\frac{7^{100}-1}{6\cdot7^{100}}\)

b: \(B=\frac53+\frac{5}{3^2}+\frac{5}{3^3}+\cdots+\frac{5}{3^{20}}\)

=>\(3B=5+\frac53+\frac{5}{3^2}+\cdots+\frac{5}{3^{19}}\)

=>\(3B-B=5+\frac53+\frac{5}{3^2}+\cdots+\frac{5}{3^{19}}-\frac53-\frac{5}{3^2}-\cdots-\frac{5}{3^{20}}\)

=>\(2B=5-\frac{5}{3^{20}}=\frac{5\cdot3^{20}-5}{3^{20}}\)

=>\(B=\frac{5\cdot3^{20}-5}{2\cdot3^{20}}\)

c: \(C=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\cdots+\frac{1}{3^{50}}\)

=>\(3C=-1+\frac13-\frac{1}{3^2}+\frac{1}{3^3}-\cdots+\frac{1}{3^{49}}\)

=>\(3C+C=-1+\frac13-\frac{1}{3^2}+\frac{1}{3^3}-\cdots+\frac{1}{3^{49}}-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\cdots+\frac{1}{3^{50}}\)

=>\(4C=-1+\frac{1}{3^{50}}=\frac{-3^{50}+1}{3^{50}}\)

=>\(C=\frac{-3^{50}+1}{4\cdot3^{50}}\)

d: \(D=\left(-\frac17\right)^0+\left(-\frac17\right)^1+\left(-\frac17\right)^2+\cdots+\left(-\frac17\right)^{2017}\)

=>\(D=1-\frac17+\frac{1}{7^2}-\frac{1}{7^3}+\cdots-\frac{1}{7^{2017}}\)

=>\(7D=7-1+\frac17-\frac{1}{7^2}+\cdots-\frac{1}{7^{2016}}\)

=>\(7D+D=7-1+\frac17-\frac{1}{7^2}+\cdots-\frac{1}{7^{2016}}+1-\frac17+\frac{1}{7^2}-\frac{1}{7^3}+\cdots-\frac{1}{7^{2017}}\)

=>\(8D=7-\frac{1}{7^{2017}}=\frac{7^{2018}-1}{7^{2017}}\)

=>\(D=\frac{7^{2018}-1}{8\cdot7^{2017}}\)

e: \(E=\frac12+\frac{1}{2^3}+\frac{1}{2^5}+\cdots+\frac{1}{2^{99}}\)

=>\(4E=2+\frac12+\frac{1}{2^3}+\cdots+\frac{1}{2^{97}}\)

=>\(4E-E=2+\frac12+\frac{1}{2^3}+\cdots+\frac{1}{2^{97}}-\frac12-\frac{1}{2^3}-\frac{1}{2^5}-\cdots-\frac{1}{2^{99}}\)

=>\(3E=2-\frac{1}{2^{99}}=\frac{2^{100}-1}{2^{99}}\)

=>\(E=\frac{2^{100}-1}{3\cdot2^{99}}\)

Bài 1:

a: \(A=2\cdot4+4\cdot6+6\cdot8+\cdots+98\cdot100\)

\(=4\left(1\cdot2+2\cdot3+3\cdot4+\cdots+49\cdot50\right)\)

\(=4\left\lbrack1\left(1+1\right)+2\left(2+1\right)+3\left(3+1\right)+\cdots+49\left(49+1\right)\right\rbrack\)

\(=4\left\lbrack\left(1^2+2^2+\cdots+49^2\right)+\left(1+2+3+\cdots+49\right)\right\rbrack\)

\(=4\cdot\left\lbrack\frac{49\left(49+1\right)\left(2\cdot49+1\right)}{6}+\frac{49\cdot50}{2}\right\rbrack=4\cdot\left\lbrack\frac{49\cdot50\cdot99}{6}+49\cdot25\right\rbrack\)

\(=4\cdot\left\lbrack49\cdot25\cdot33+49\cdot25\right\rbrack=4\cdot49\cdot25\cdot34=100\cdot49\cdot34\)

=166600

b: \(B=1\cdot99+2\cdot98+\cdots+97\cdot3+98\cdot2+99\cdot1\)

\(=2\cdot\left(1\cdot99+2\cdot98+\cdots+48\cdot52+49\cdot51\right)+50^2\)

\(=2\cdot\left\lbrack1\left(100-1\right)+2\left(100-2\right)+\cdots+48\left(100-48\right)+49\left(100-49\right)\right\rbrack+50^2\)

\(=2\left\lbrack100\left(1+2+\cdots+49\right)-\left(1^2+2^2+\cdots+49^2\right)\right\rbrack\) +2500

\(=2\cdot\left\lbrack100\cdot\frac{49\cdot50}{2}-\frac{49\cdot\left(49+1\right)\left(2\cdot49+1\right)}{6}\right\rbrack+2500\)

\(=2\cdot\left\lbrack100\cdot49\cdot25-\frac{49\cdot50\cdot99}{6}\right\rbrack+2500\)

\(=2\cdot\left\lbrack100\cdot49\cdot25-49\cdot25\cdot33\right\rbrack+2500=2\cdot25\cdot49\left(100-33\right)+2500\)

\(=50\cdot49\cdot67+2500=166650\)

d: \(D=2^2+4^2+\cdots+98^2+100^2\)

\(=2^2\left(1^2+2^2+\cdots+49^2+50^2\right)\)

\(=4\cdot\frac{50\cdot\left(50+1\right)\left(2\cdot50+1\right)}{6}=4\cdot\frac{50\cdot51\cdot101}{6}\)

\(=4\cdot25\cdot17\cdot101=100\cdot17\cdot101=171700\)

e: \(E=1^2+3^2+5^2+\cdots+99^2\)
\(=\left(1^2+2^2+3^2+4^2+\cdots+99^2+100^2\right)-\left(2^2+4^2+\cdots+100^2\right)\)

\(=\frac{100\left(100+1\right)\left(2\cdot100+1\right)}{6}-2^2\left(1^2+2^2+\cdots+50^2\right)\)

\(=\frac{100\cdot101\cdot201}{6}-4\cdot\frac{50\left(50+1\right)\left(2\cdot50+1\right)}{6}\)

\(=50\cdot101\cdot67-4\cdot\frac{50\cdot51\cdot101}{6}\)

\(=50\cdot101\cdot67-4\cdot25\cdot17\cdot101=101\cdot50\left(67-2\cdot17\right)\)

\(=50\cdot101\cdot33=166650\)

f: \(F=1^2-2^2+3^2-4^2+\cdots+99^2-100^2\)

\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+\cdots+\left(99-100\right)\left(99+100\right)\)

=-(1+2+3+4+...+99+100)

\(=-100\cdot\frac{101}{2}=-50\cdot101=-5050\)

Hãy phân tích dữ liệu được biểu diễn trên biểu đồ sau:

1
HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

+ Biểu đồ biểu diễn nhiệt độ trung bình các tháng năm 2020 tại Thành phố Hồ Chí Minh.

+ Đơn vị thời gian là tháng, đơn vị số liệu là độ C.

+ Tháng 4 có nhiệt độ trung bình cao nhất.

+ Tháng 12 có nhiệt độ trung bình thấp nhất.

+ Nhiệt độ trung bình tăng trong những khoảng thời gian từ tháng: 1 – 2; 2 – 3; 3 – 4.

+ Nhiệt độ trung bình giảm trong những khoảng thời gian từ tháng: 4 – 5; 5 – 6; 6 – 7; 8 – 9; 10 – 11; 11 – 12.

+ Nhiệt độ trung bình không đổi trong những khoảng thời gian từ tháng: 7 – 8; 9 – 10.

Mỗi điểm A,B,C trên trục số Hình 1.4 biểu diễn số hữu tỉ nào?

1
HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Đoạn thẳng đơn vị được chia thành 6 phần bằng nhau, lấy một đoạn làm đơn vị mới, đơn vị mới bằng \(\frac{1}{6}\) đơn vị cũ.

Điểm A nằm bên phải gốc O và cách O một đoạn bằng 10 đơn vị mới. Do đó điểm A biểu diễn số hữu tỉ \(\frac{{10}}{6} = \frac{5}{3}\)

Điểm B nằm bên trái gốc O và cách O một đoạn bằng 5 đơn vị mới. Do đó điểm B biểu diễn số hữu tỉ \(\frac{{ - 5}}{6}\)

Điểm C nằm bên trái gốc O và cách O một đoạn bằng 13 đơn vị mới. Do đó điểm C biểu diễn số hữu tỉ \(\frac{{ - 13}}{6}\)

Trong Hình 4.29, hai tam giác nào bằng nhau?

1
HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP}\) (gt)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

Một số tuyến xe buýt ở Hà Nội mà bạn An đã đi là: 01; 02; 12; 15.

1
HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Dãy đã cho là dãy số liệu.

=> Em ủng hộ bạn Tròn.

Hai tam giác ABC và MNP trong Hình 4.31 có bằng nhau không? Vì sao?

1
HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Xét tam giác MNP có:

\(\begin{array}{l}\widehat M + \widehat N + \widehat P = {180^o}\\ \Rightarrow \widehat M + {50^o} + {70^o} = {180^o}\\ \Rightarrow \widehat M = {60^o}\end{array}\)

Xét 2 tam giác ABC và MNP có:

AB=MN (gt)

\(\widehat {BAC} = \widehat {NMP} (=60^0)\)

AC=MP (gt)

Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

Viết tên hai góc kề bù trong Hình 3.4 và tính số đo góc mOt.

1
HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

2 góc kề bù trong hình là: góc mOt và tOn

Ta có:

\(\begin{array}{l}\widehat {mOt} + \widehat {tOn} = 180^\circ \\\widehat {mOt} = 180^\circ  - \widehat {tOn} = 180^\circ  - 60^\circ  = 120^\circ \end{array}\)

Điểm kiểm tra 1 tiết của các HS được ghi lại ở bảng tần số sau:Điểm(x)56910Tần số (n)n521Biết TBC là 6,8. tìm nCác bạn ơi viết cách làm luôn cho mình...
Đọc tiếp

Điểm kiểm tra 1 tiết của các HS được ghi lại ở bảng tần số sau:

Điểm(x)56910
Tần số (n)n521

Biết TBC là 6,8. tìm n

Các bạn ơi viết cách làm luôn cho mình nha 

4
10 tháng 2 2016

khog biet hihi

10 tháng 2 2016

n=2 cach giai mik viet sau