Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\left|2x\right|-\left|-2,5\right|=\left|-7,5\right|\)
\(\Rightarrow\left|2x\right|-2,5=7,5\)
\(\Rightarrow\left|2x\right|=10\)
\(\Rightarrow\left[{}\begin{matrix}2x=10\Rightarrow x=5\\2x=-10\Rightarrow x=-5\end{matrix}\right.\)
\(\left|2x\right|-\left|-2,5\right|=\left|-7,5\right|\)
\(\Rightarrow\left|2x\right|-2,5=7,5\)
\(\Rightarrow\left|2x\right|=10\)
\(\Rightarrow\left[{}\begin{matrix}2x=10\Rightarrow x=5\\2x=-10\Rightarrow x=-5\end{matrix}\right.\)
Vậy .............
Chúc bạn học tốt!
a)\(\left|2x\right|-\left|-2,5\right|=\left|-7,5\right|\)
\(\Rightarrow\left|2x\right|-2,5=7,5\)
\(\Rightarrow\left|2x\right|=10\)
\(\Rightarrow\left[{}\begin{matrix}2x=10\Rightarrow x=5\\2x=-10\Rightarrow x=-5\end{matrix}\right.\)
b) \(\left|2x-3\right|=1\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=1\Rightarrow2x=4\Rightarrow x=2\\2x-3=-1\Rightarrow2x=2\Rightarrow x=1\end{matrix}\right.\)
c) \(\left|x-3,5\right|+\left|y-1,3\right|=0\)
Ta có: \(\left|x-3,5\right|\ge0\forall x\)
\(\left|y-1,3\right|\ge0\forall y\)
\(\Rightarrow\left|x-3,5\right|+\left|y-1,3\right|\ge0\forall x,y\)
Dấu "=" xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}x-3,5=0\Rightarrow x=3,5\\y-1,3=0\Rightarrow y=1,3\end{matrix}\right.\)
\(a)\left|2x\right|-\left|-2,5\right|=\left|-7,5\right|\)
\(\Rightarrow\left|2x\right|-2,5=7,5\)
\(\Rightarrow\left|2x\right|=10\)
\(\Rightarrow\left[{}\begin{matrix}2x=10\Rightarrow x=5\\2x=-10\Rightarrow x=-5\end{matrix}\right.\)
Vậy ...............
\(b)\left|2x-3\right|=1\)
\(\Rightarrow\left|2x\right|-3=1\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=1\Rightarrow2x=4\Rightarrow x=2\\2x-3=-1\Rightarrow2x=2\Rightarrow x=1\end{matrix}\right.\)
Vậy .........
\(c)\left|x-3,5\right|+\left|y-1,3\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3,5=0\Rightarrow x=3,5\\y-1,3=0\Rightarrow y=1,3\end{matrix}\right.\)
Vậy ..............
Chúc bạn học tốt!
a) \(2x\left(x-3\right)+6\left(3-x\right)=0\)
\(\Leftrightarrow2\left[x\left(x-3\right)+3\left(3-x\right)\right]=0\)
\(\Leftrightarrow x\left(x-3\right)+3\left(3-x\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Rightarrow x=3\)
b) \(3x\left(2x-5\right)-15\left(5-2x\right)=0\)
\(\Leftrightarrow3\left[x\left(2x-5\right)-5\left(5-2x\right)\right]=0\)
\(\Leftrightarrow x\left(2x-5\right)-5\left(5-2x\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{2}\end{cases}}\)
|x-1,5| + 2|x-1,5| =7,5
3|x-1,5| =7,5
|x-1,5| = 2,5
+ x -1,5 = 2,5 => x =4
+ x-1,5 = -2,5 => x =-1
a, \(\left|x+2\right|-\left|x+7\right|=0\Rightarrow\left|x+2\right|=\left|x+7\right|\Rightarrow\orbr{\begin{cases}x+2=x+7\\x+2=-x-7\end{cases}\Rightarrow\orbr{\begin{cases}0=5\left(loại\right)\\2x=-9\end{cases}\Rightarrow}x=\frac{-9}{2}}\)
b, - Nếu \(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\), ta có: 2x - 1 = 2x - 1 => 2x = 2x (thỏa mãn với mọi x)
- Nếu 2x - 1 < 0 => \(x< \frac{1}{2}\), ta có: 2x - 1 = 1 - 2x => 4x = 2 => x = \(\frac{1}{2}\) (không thỏa mãn điều kiện)
Vậy \(x\ge\frac{1}{2}\)
c,d tương tự b
e, tương tự a
-2x=(-7,5)+(-2,5)
-2x=-10
x =-10:(-2)
x =5
Vậy x=5
\(\left(-2x\right)-\left(-2,5\right)=-7,5\)
\(-2x+2,5=-7,5\)
\(-2x=-10\)
\(x=5\)