Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.2
1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
2) Ta có: \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}+1}{3-\sqrt{x}}-\dfrac{3-11\sqrt{x}}{x-9}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
c) \(x-\dfrac{10}{3}=\dfrac{7}{15}\cdot\dfrac{3}{5}\)
\(x-\dfrac{10}{3}=\dfrac{7}{25}\)
\(x=\dfrac{7}{25}+\dfrac{10}{3}\)
\(x=\dfrac{271}{75}\)
d) \(x+\dfrac{3}{22}=\dfrac{27}{121}\div\dfrac{9}{11}\)
\(x+\dfrac{3}{22}=\dfrac{3}{11}\)
\(x=\dfrac{3}{11}-\dfrac{3}{22}\)
\(x\) \(=\dfrac{3}{22}\)
e) \(\dfrac{8}{23}\div\dfrac{24}{46}-x=\dfrac{1}{3}\)
\(\dfrac{2}{3}-x=\dfrac{1}{3}\)
\(x=\dfrac{2}{3}-\dfrac{1}{3}\)
\(x=\dfrac{1}{3}\)
f) \(1-x=\dfrac{49}{65}\cdot\dfrac{5}{7}\)
\(1-x=\dfrac{7}{13}\)
\(x=1-\dfrac{7}{13}\)
\(x=\dfrac{6}{13}\)
H1: x = 360o - 130o - 60o - 82o = 88o
H2: x = 360o - 90o - 90o - 72o = 108o
H3: x = 360o - 90o - 115o - 70o = 85o
H4: 2x = 360o - 71o - 105o = 184o
=> x = 184o : 2 = 62o
áp dụng đl ta-lét vào tam giác có:
\(\dfrac{BC}{CA}=\dfrac{DE}{EA}=\dfrac{BC}{5}=\dfrac{3}{8}=>BC=\dfrac{3}{8}.5=\dfrac{15}{8}=1,875\)
X = BC + CA = 1,875 + 5 = 6,875
Gọi vận tốc ca nô là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{72}{x+3}+\dfrac{54}{x-3}=6\Rightarrow x=21\left(tm\right)\)
`c)-x^2+7x-2=-(x^2-7x)-2`
`=-(x^2-7x+49/4-49/4)-2`
`=-(x-7/2)^2+49/4-2`
`=-(x-7/2)^2+41/4<=41/4`
Dấu "=" xảy ra khi `x=7/2`
`d)-4x^2+8x-9=-(4x^2-8x)-9`
`=-(4x^2-8x+4-4)-9`
`=-(2x-2)^2-5<=-5`
Dấu "=" xảy ra khi `x=1`
`e)-3x^2+5x+10`
`=-3(x^2-5/3x)+10`
`=-3(x^2-5/3x+25/36-25/36)+10`
`=-3(x-5/6)^2+25/12+10`
`=-3(x-5/6)^2+145/12<=145/12`
Dấu "=" xảy ra khi`x=5/6`
b. -x2-2x+15
= -(x-1)2+14
= 14-(x-1)2
Do (x-1)2 ≥0∀x nên 14-(x-1)2≤ 14
Dấu bằng xảy ra khi x=1
Vậy max=14 khi x=1