Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 7
\(x^{n+2}-x^n\)
\(=x^{n+2-n}=x^2\)
\(\left(b\right)x^{x+3}-x^{x+1}=x^{x+3-x-1}=X^2\)
c)
\(x^{2m}+x^m=x^{2m+m}=x^{2m}\)
d)
\(x^{2n+1}-x^{4n}=x^{2n+1-4n}=x^{1-2n}\)
a) \(\left(x+2\right)^2=4\left(2x-1\right)^2\)
\(\left(x+2\right)^2-4\left(2x-1\right)^2=0\)
\(\left(x+2\right)^2-\left[2\left(2x-1\right)\right]^2=0\)
\(\left(x+2\right)^2-\left(4x-2\right)^2=0\)
\(\left(x+2-4x+2\right)\left(x+2+4x-2\right)=0\)
\(6x\left(-3x+4\right)=0\)
\(\Rightarrow6x=0\) hoặc \(-3x+4=0\)
*) \(6x=0\)
\(x=0\)
*) \(-3x+4=0\)
\(3x=4\)
\(x=\dfrac{4}{3}\)
Vậy \(x=0;x=\dfrac{4}{3}\)
b) \(4x\left(x-2019\right)-x+2019=0\)
\(4x\left(x-2019\right)-\left(x-2019\right)=0\)
\(\left(x-2019\right)\left(4x-1\right)=0\)
\(\Rightarrow x-2019=0\) hoặc \(4x-1=0\)
*) \(x-2019=0\)
\(x=2019\)
*) \(4x-1=0\)
\(4x=1\)
\(x=\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4};x=2019\)
Mọi người giải giúp mình bài này với ạ, cảm ơn mn nhiều, chỉ cần câu c ý chứng minh góc 90 độ thôi ạ
a: Xét tứ giác ABQN có
\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)
=>ABQN là hình chữ nhật
b: Xét ΔCAD có
DN,CH là các đường cao
DN cắt CH tại M
Do đó: M là trực tâm của ΔCAD
=>AM\(\perp\)CD
c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔHAB đồng dạng với ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
=>\(HA=\sqrt{HB\cdot HC}\)
\(2b,=\left(2x^3-4x^2-4x^2+8x-2x+4-9\right):\left(2x-4\right)\\ =\left[\left(2x-4\right)\left(x^2-2x-2\right)-9\right]:\left(2x-4\right)\\ =x^2-2x-2\left(\text{ dư -9}\right)\)
\(2x^2-2y^2+10x+10y\)
\(=2\left(x^2-y^2\right)+10\left(x+y\right)\)
\(=2\left(x-y\right)\left(x+y\right)+10\left(x+y\right)\)
\(=2\left(x+y\right)\left(x-y+5\right)\)
\(2x^2-2y^2+10x+10y=\left(2x^2-2y^2\right)+\left(10x+10y\right)=2\left(x^2-y^2\right)+10\left(x+y\right)=2\left(x-y\right)\left(x+y\right)+10\left(x+y\right)=\left(x+y\right)\left[2\left(x-y\right)+10\right]=\left(x+y\right)\left(2x-2y+10\right)=2\left(x+y\right)\left(x-y+5\right)\)
f: \(3ab-6a+b-2\)
\(=3a\left(b-2\right)+\left(b-2\right)\)
\(=\left(b-2\right)\left(3a+1\right)\)