K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 9 2021

\(B_2=\left\{x;x=2k,k\in N\right\}\)

\(B_4=\left\{x;x=4m,m\in N\right\}\)

Do \(4m=2.\left(2m\right)\Rightarrow B_4\subset B_2\)

\(\Rightarrow B_2\cap B_4=B_4\)

13 tháng 12 2020

11 c)

\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) (luôn đúng)

13 tháng 12 2020

12 a)  Có a+b+c=1\(\Rightarrow\) (1-a)(1-b)(1-c)= (b+c)(a+c)(a+b) (*)

áp dụng BĐT cô-si: \(\left(b+c\right)\left(a+c\right)\left(a+b\right)\ge2\sqrt{bc}2\sqrt{ac}2\sqrt{ab}=8\sqrt{\left(abc\right)2}=8abc\) ( luôn đúng với mọi a,b,c ko âm ) 

b)  áp dụng BĐT cô-si: \(c\left(a+b\right)\le\dfrac{\left(a+b+c\right)^2}{4}=\dfrac{1}{4}\)

Tương tự: \(a\left(b+c\right)\le\dfrac{1}{4};b\left(c+a\right)\le\dfrac{1}{4}\)

\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{4}\dfrac{1}{4}\dfrac{1}{4}=\dfrac{1}{64}\)

11 tháng 4 2021

7.

Phương trình đường tròn \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\) với tâm \(I=\left(a;b\right)\), bán kính \(R\)

\(\Rightarrow\) Tâm đường tròn \(\left(x-1\right)^2+\left(y+2\right)^2=4\) có tọa độ \(\left(1;-2\right)\)

Kết luận: Tâm đường tròn có tọa độ \(\left(1;-2\right)\).

11 tháng 4 2021

9.

Cos đối, sin bù, phụ chéo, khác \(\pi\) tan, kém \(\dfrac{\pi}{2}\) chéo sin

\(sin\left(x+\dfrac{\pi}{2}\right)=sin\left(\dfrac{\pi}{2}-\left(-x\right)\right)=cos\left(-x\right)=cosx\)

Kết luận: \(sin\left(x+\dfrac{\pi}{2}\right)=cosx\)

Câu 1: Vì (d') vuông góc với (d) nên \(a\cdot\dfrac{-1}{3}=-1\)

hay a=3

Vậy: (d'): y=3x+b

Thay x=4 và y=-5 vào (d'), ta được:

b+12=-5

hay b=-17

31 tháng 3 2023

x^5 + 5.x^4.2y + 10.x^3.4y^2 + 10.x^2.8y^3 + 5.x.16y^4 + 32y^5

= x^5 + 10.x^4.y + 40.x^3.y^2 + 80.x^2.y^3 + 80.x.y^4 +32.y^5

2 tháng 9 2021

 nếu sai thì giải thích ra nha

2 tháng 9 2021

à sửa lại đề chút

\(a,\forall x\in R,x>3\Leftrightarrow x^2>9\)

11:

Mở ảnh

a: ABCD là hình chữ nhật

=>vecto AB+vecto AD=vecto AC

\(AC=\sqrt{\left(3a\right)^2+\left(4a\right)^2}=5a\)

\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC=5a\)

b: Gọi M là trung điểm của BC

=>BM=MC=4a/2=2a

Trên tia đối của tia MA lấy D sao cho M là trung điểm của AD

Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>\(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AD}=2\cdot\overrightarrow{AM}\)

\(AM=\sqrt{AB^2+BM^2}=\sqrt{\left(3a\right)^2+\left(2a\right)^2}=a\sqrt{13}\)

=>\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\cdot AM=2a\sqrt{13}\)