K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2021

16)

a) Tam giác ABC vuông tại A : \(AB^2+AC^2=BC^2\) 

BC=10 ⇒FC=10-5.2=4.8

b) Tam giác ABC và tam giác FEC có 

   C chung 

\(\dfrac{AC}{FC}=\dfrac{BC}{EC}=0.6\)

Do đó tam giác ABC đồng dạng với tam giác FEC (C-G-C)

c)⇒Góc  FEC=ABC=AEM

Tam giác MAE và tam giác MFB có

   Góc M chung 

Góc AEM = MBF (CMT)

⇒ 2 Tam giác đồng dạng (G-G)

\(\dfrac{MA}{MF}=\dfrac{ME}{MB}\)⇒ MA.MB=MF.MB

 

14 tháng 5 2021

a) Xét \(\Delta ABC\) vuông tại A có :

             \(AB^2+AC^2=BC^2\) (Định lí Py-ta-go)

=>        \(BC^2=6^2+8^2=100\) 

=>       BC = 10 (cm)

=>   CF = BC\(-\)BF = 10 - 5,2 = 4,8 (cm)

Vậy BC = 10 cm ; CF = 4,8 cm

b) Xét \(\Delta CAB\) và \(\Delta CFE\) có

 \(\left\{{}\begin{matrix}\widehat{C}:chung\\\dfrac{CF}{CE}=\dfrac{CA}{CB}\left(\dfrac{4,8}{6}=\dfrac{8}{10}=\dfrac{4}{5}\right)\end{matrix}\right.\)

=>\(\Delta CAB\sim\Delta CFE\) (c-g-c)

Vậy \(\Delta CAB\sim\Delta CFE\)

c) Xét \(\Delta MAEvà\Delta MFB\) có

\(\left\{{}\begin{matrix}\widehat{M}:chung\\\widehat{MAE}=\widehat{MFB}=90^0\end{matrix}\right.\)

=> \(\Delta MAE\sim\Delta MFB\)  (g-g)

=> \(\dfrac{MA}{MF}=\dfrac{ME}{MB}\)

=> MA.MB = MF.ME

Vậy MA.MB = ME.MF

d) Xét \(\Delta BMF\) và \(\Delta BCA\) có

\(\left\{{}\begin{matrix}\widehat{B}:chung\\\widehat{BFM}=\widehat{BAC}=90^0\end{matrix}\right.\) 

=> \(\Delta BMF\) \(\sim\)\(\Delta BCA\) (g-g)

=> \(\dfrac{MF}{AC}=\dfrac{BF}{BA}\) 

=> MF = \(\dfrac{8.5,2}{6}\) = \(\dfrac{104}{15}\approx6,9\left(cm\right)\)

Vậy MF \(\approx6,9\left(cm\right)\) 

a) Xét ΔABC vuông tại A và ΔFEC vuông tại F có 

\(\widehat{ECF}\) chung

Do đó: ΔABC\(\sim\)ΔFEC(g-g)

Suy ra: \(\dfrac{CA}{CF}=\dfrac{CB}{CE}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(CA\cdot CE=CB\cdot CF\)(Đpcm)

b) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

 

Bài 3: 

Xét ΔBAC có

E là trung điểm của AB

D là trung điểm của AC

Do đó: DE là đường trung bình của ΔBAC

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\)

Hình thang EDCB có 

M là trung điểm của EB

N là trung điểm của DC

Do đó: MN là đường trung bình của hình thang EDCB

Suy ra: MN//ED//BC và \(MN=\dfrac{ED+BC}{2}\)

\(\Leftrightarrow MN=\left(\dfrac{1}{2}BC+BC\right):2=\dfrac{3}{4}BC\)

Xét ΔEBD có

M là trung điểm của EB

MI//ED

Do đó: I là trung điểm của BD

Xét ΔBED có 

M là trung điểm của EB

I là trung điểm của BD

Do đó: MI là đường trung bình của ΔBED

Suy ra: \(MI=\dfrac{ED}{2}=\dfrac{1}{4}BC\left(1\right)\)

Xét ΔECD có 

N là trung điểm của DC

NK//ED

Do đó: K là trung điểm của EC

Xét ΔECD có 

N là trung điểm của DC

K là trung điểm của EC

Do đó: NK là đường trung bình của ΔECD

Suy ra: \(NK=\dfrac{ED}{2}=\dfrac{1}{4}BC\left(2\right)\)

Ta có: MI+IK+KN=MN

nên \(IK=\dfrac{1}{4}BC\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra MI=IK=KN

Bài 2: 

Gọi K là trung điểm của AD và O là trung điểm của BC

Xét ΔABC có 

P là trung điểm của AC

O là trung điểm của BC

Do đó: PO là đường trung bình của ΔABC

Suy ra: PO//AB

hay PO//CD

Xét ΔDAB có

K là trung điểm của AD

Q là trung điểm của BD

Do đó: KQ là đường trung bình của ΔDAB

Suy ra: KQ//AB

hay KQ//CD

Xét ΔBDC có 

Q là trung điểm của BD

O là trung điểm của BC

Do đó: QO là đường trung bình của ΔBDC

Suy ra: QO//DC

Ta có: QO//DC

mà PO//DC

và QO,PO có điểm chung là O

nên Q,P,O thẳng hàng

Ta có: KQ//CD

QO//CD

mà KQ và QO có điểm chung là Q

nên K,Q,O thẳng hàng

mà Q,P,O thẳng hàng

nên K,Q,P,O thẳng hàng

hay QP//DC(1)

Xét ΔEAB có

M là trung điểm của EA

N là trung điểm của EB

Do đó: MN là đường trung bình của ΔEAB

Suy ra: MN//AB

hay MN//DC(2)

Từ (1) và (2) suy ra MN//PQ

Xét tứ giác MNPQ có MN//PQ

nên MNPQ là hình thang

6 tháng 5 2021

Bài 5 hình 1: (tự vẽ hình nhé bạn)
a) Xét ΔABD và ΔACB ta có:
\(\widehat{BAD}\)\(\widehat{BAC}\) (góc chung)
\(\widehat{ABD}\)\(\widehat{ACB}\) (gt)
=> ΔABD ~ ΔACB (g-g)
=> \(\dfrac{AB}{AC}\) = \(\dfrac{BD}{CB}\) = \(\dfrac{AD}{AB}\) (tsđd)
b) Ta có: \(\dfrac{AB}{AC}\) = \(\dfrac{AD}{AB}\) (cm a)
=> \(AB^2\) = AD.AC
=> \(2^2\) = AD.4
=> AD = 1 (cm)
Ta có: AC = AD + DC (D thuộc AC)
      => 4   =   1   + DC
      => DC = 3 (cm)
c) Xét ΔABH và ΔADE ta có: 
   \(\widehat{AHB}\) = \(\widehat{AED}\) (=\(90^0\))
   \(\widehat{ADB}\) = \(\widehat{ABH}\) (ΔABD ~ ΔACB)
=> ΔABH ~ ΔADE
=> \(\dfrac{AB}{AD}\) = \(\dfrac{AH}{AE}\) = \(\dfrac{BH}{DE}\) (tsdd)
Ta có: \(\dfrac{S_{ABH}}{S_{ADE}}\) = \(\left(\dfrac{AB}{AD}\right)^2\)\(\left(\dfrac{2}{1}\right)^2\)= 4
=> đpcm

6 tháng 5 2021

Tiếp bài 5 hình 2 (tự vẽ hình)
a) Xét ΔABC vuông tại A ta có:
\(BC^2\) = \(AB^2\) + \(AC^2\)
\(BC^2\) = \(21^2\) + \(28^2\)
BC = 35 (cm)
b) Xét ΔABC và ΔHBA ta có:
\(\widehat{BAC}\) = \(\widehat{AHB}\) ( =\(90^0\))
\(\widehat{ABC}\) = \(\widehat{ABH}\) (góc chung)
=> ΔABC ~ ΔHBA (g-g)
=> \(\dfrac{AB}{BH}\) = \(\dfrac{BC}{AB}\) (tsdd)
=> \(AB^2\) = BH.BC
=> \(21^2\) = 35.BH
=> BH = 12,6 (cm)
c) Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}\) = \(\dfrac{AB}{BC}\) (t/c đường p/g)
Xét ΔABH ta có: 
BE là đường p/g (gt)
=> \(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (t/c đường p/g)
Mà: \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (cm b)
=> đpcm
d) Ta có: \(\left\{{}\begin{matrix}\widehat{HBE}+\widehat{BEH}=90^0\\\widehat{ABD}+\widehat{ADB=90^0}\\\widehat{HBE}=\widehat{ABD}\end{matrix}\right.\)
=> \(\widehat{BEH}=\widehat{ADB}\)
Mà \(\widehat{BEH}=\widehat{AED}\) (2 góc dd)
Nên \(\widehat{ADB}=\widehat{AED}\)
=> đpcm

26 tháng 6 2021

undefined

Bài 1.2

1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

2) Ta có: \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}+1}{3-\sqrt{x}}-\dfrac{3-11\sqrt{x}}{x-9}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)

NV
13 tháng 4 2022

80cm=0,8m, 60cm=0,6m

Diện tích xung quanh căn phòng là:

\(2\left(10+5\right).4=120\left(m^2\right)\)

Diện tích cửa chính:

\(1,8\times2=3,6\left(m^2\right)\)

Diện tích 2 cửa sổ:

\(0,8\times0,6\times2=0,96\left(m^2\right)\)

Diện tích cần sơn:

\(200-\left(3,6+0,96\right)=115,44\left(m^2\right)\)

Chi phí tiền công:

\(195,44\times25000=2886000\) đồng

25 tháng 9 2021

\(A=\left(4x-1\right)\left(3x+1\right)-5x\left(x-3\right)-\left(x-4\right)\left(x-3\right)\)

\(=\left(4x-1\right)\left(3x+1\right)-\left(5x+x-4\right)\left(x-3\right)\)

\(=12x^2+4x-3x-1-6x^2+4x+18x-12\)

\(=18x^2+19x-13\)