Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\ge5\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{x-5}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow4b^2-3a^2=x-20\)
\(PT\Leftrightarrow4b^2-3a^2+a+b+ab=0\\ \Leftrightarrow4ab+4b^2-3a^2-3ab+a+b=0\\ \Leftrightarrow4b\left(a+b\right)-3a\left(a+b\right)+\left(a+b\right)=0\\ \Leftrightarrow\left(a+b\right)\left(4b-3a+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a+b=0\left(\text{loại do }a+b>0\right)\\4b-3a+1=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow4\sqrt{x-5}=3\sqrt{x}-1\\ \Leftrightarrow16x-80=9x-6\sqrt{x}+1\\ \Leftrightarrow7x+6\sqrt{x}-81=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=-\dfrac{27}{7}\left(loại\right)\end{matrix}\right.\Leftrightarrow x=9\left(nhận\right)\)
\(x^3-6x+9=0\\ \Leftrightarrow x^3+3x^2-3x^2-9x+3x+9=0\\ \Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+3\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+3\right)=0\\ \left[{}\begin{matrix}x=-3\\x^2-3x+3=0\end{matrix}\right.\)
PT dưới vô nghiệm do \(\Delta=3^2-4\cdot3< 0\).
Suy ra PT ban đầu nghiệm duy nhất \(x=-3\).
Chúc bạn học tốt nha
đk: \(\left\{{}\begin{matrix}x\ge-1\\y\ge-2\end{matrix}\right.\)
TheoBĐT Bunhiacopxki ,ta có: \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\)
\(\Rightarrow\left(x+y\right)^2-9\left(\sqrt{x+1}+\sqrt{y+2}\right)^2\le9.2\left(x+y+3\right)\)
\(\Leftrightarrow\left(x+y\right)^2-18\left(x+y\right)-54\le0\)
\(\Rightarrow x+y\le9+3\sqrt{15}\Rightarrow P\le9+3\sqrt{15}\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+y=9+3\sqrt{15}\\\sqrt{x+1}=\sqrt{y+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+3\sqrt{15}}{2}\\y=\dfrac{8+3\sqrt{15}}{2}\end{matrix}\right.\)
Vậy Max P = \(9+3\sqrt{15}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+3\sqrt{15}}{2}\\y=\dfrac{8+3\sqrt{15}}{2}\end{matrix}\right.\)
===> Chọn D
\(\left\{{}\begin{matrix}A+G=50\%\\\dfrac{A}{G}=0,6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}A+G=0,5\\\dfrac{A}{G}=0,6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}A+G=0,5\\A=0,6G\end{matrix}\right.\)
Thay \(A=0,6G\) vào ta có:
\(\Leftrightarrow\left\{{}\begin{matrix}0,6G+G=0,5\\A=0,6G\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}1,6G=0,5\\A=0,6G\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}G=\dfrac{0,5}{1,6}\\A=0,6G\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}G=0,3125\\A=0,6\cdot0,3125\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}G=0,3125\\A=0,1875\end{matrix}\right.\)
Vậy: \(\left\{{}\begin{matrix}G=31,25\%\\A=18,75\%\end{matrix}\right.\)
Câu 6:
a: \(\overrightarrow{AC}=\left(3;-3\right)\)
\(\overrightarrow{DB}=\left(4-x_D;1-y_D\right)\)
Để ACBD là hình bình hành thì \(\left\{{}\begin{matrix}4-x_D=3\\1-y_D=-3\end{matrix}\right.\Leftrightarrow D\left(1;4\right)\)