Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
Với \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) ko phải nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}2-\dfrac{1}{2x+y}=\dfrac{2}{\sqrt{y}}\\2+\dfrac{1}{2x+y}=\dfrac{2}{\sqrt{x}}\end{matrix}\right.\)
Lần lượt cộng vế với vế và trừ vế cho vế 2 pt ta được:
\(\left\{{}\begin{matrix}2=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\\\dfrac{1}{2x+y}=\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{y}}\end{matrix}\right.\)
Nhân vế với vế:
\(\dfrac{2}{2x+y}=\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{y}}\right)\)
\(\Leftrightarrow\dfrac{2}{2x+y}=\dfrac{1}{x}-\dfrac{1}{y}\)
\(\Leftrightarrow2x^2+xy-y^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(2x-y\right)=0\)
\(\Leftrightarrow...\)
Câu 1: Vì (d') vuông góc với (d) nên \(a\cdot\dfrac{-1}{3}=-1\)
hay a=3
Vậy: (d'): y=3x+b
Thay x=4 và y=-5 vào (d'), ta được:
b+12=-5
hay b=-17
Câu 1:
TXĐ: D=R
\(f\left(-x\right)=2\cdot\left(-x\right)^4-3\cdot\left(-x\right)^2+1=2x^4-3x^2+1=f\left(x\right)\)
Vậy: f(x) là hàm số chẵn
a: \(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CB}\right|=10a\)
b: \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{BC}{2}=5a\)
Pt có 2 nghiệm khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta'=9\left(m-1\right)^2-9m\left(m-3\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\ge-1\end{matrix}\right.\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{6\left(m-1\right)}{m}\\x_1x_2=\dfrac{9\left(m-3\right)}{m}\end{matrix}\right.\)
\(x_1+x_2=x_1x_2\Rightarrow\dfrac{6\left(m-1\right)}{m}=\dfrac{9\left(m-3\right)}{m}\)
\(\Rightarrow6\left(m-1\right)=9\left(m-3\right)\)
\(\Rightarrow m=7\)
A đúng
Câu 1:
TXĐ:D=R
\(f\left(-x\right)=2\cdot\left(-x\right)^4-3\cdot\left(-x\right)^2+1\)
\(=2x^4-3x^2+1=f\left(x\right)\)
=>f(x) là hàm số chẵn
đk: \(\left\{{}\begin{matrix}x\ge-1\\y\ge-2\end{matrix}\right.\)
TheoBĐT Bunhiacopxki ,ta có: \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\)
\(\Rightarrow\left(x+y\right)^2-9\left(\sqrt{x+1}+\sqrt{y+2}\right)^2\le9.2\left(x+y+3\right)\)
\(\Leftrightarrow\left(x+y\right)^2-18\left(x+y\right)-54\le0\)
\(\Rightarrow x+y\le9+3\sqrt{15}\Rightarrow P\le9+3\sqrt{15}\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+y=9+3\sqrt{15}\\\sqrt{x+1}=\sqrt{y+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+3\sqrt{15}}{2}\\y=\dfrac{8+3\sqrt{15}}{2}\end{matrix}\right.\)
Vậy Max P = \(9+3\sqrt{15}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+3\sqrt{15}}{2}\\y=\dfrac{8+3\sqrt{15}}{2}\end{matrix}\right.\)
===> Chọn D