Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=\dfrac{\left(-2x+2\right)\left(x-3\right)-\left(-x^2+2x+c\right)}{\left(x-3\right)^2}=\dfrac{-x^2+6x-6-c}{\left(x-3\right)^2}\)
\(\Rightarrow\) Cực đại và cực tiểu của hàm là nghiệm của: \(-x^2+6x-6-c=0\) (1)
\(\Delta'=9-\left(6+c\right)>0\Rightarrow c< 3\)
Gọi \(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}-x_1^2+6x_1-6=c\\-x_2^2+6x_2-6=c\end{matrix}\right.\)
\(\Rightarrow m-M=\dfrac{-x_1^2+2x_1+c}{x_1-3}-\dfrac{-x_2^2+2x_2+c}{x_2-3}=4\)
\(\Leftrightarrow\dfrac{-2x_1^2+8x_1-6}{x_1-3}-\dfrac{-2x_2^2+8x_2-6}{x_2-3}=4\)
\(\Leftrightarrow2\left(1-x_1\right)-2\left(1-x_2\right)=4\)
\(\Leftrightarrow x_2-x_1=2\)
Kết hợp với Viet: \(\left\{{}\begin{matrix}x_2-x_1=2\\x_1+x_2=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=4\end{matrix}\right.\)
\(\Rightarrow c=2\)
Có 1 giá trị nguyên
Bài 3.9:
a)
\(\int ^{1}_{0}(y^3+3y^2-2)dy=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{y^4}{4}+y^3-2y \right )=\frac{-3}{4}\)
b) \(\int ^{4}_{1}\left (t+\frac{1}{\sqrt{t}}-\frac{1}{t^2}\right)dt=\left.\begin{matrix} 4\\ 1\end{matrix}\right|\left ( \frac{t^2}{2}+2\sqrt{t}+\frac{1}{t} \right )=\frac{35}{4}\)
d) Ta có:
\(\int ^{1}_{0}(3^s-2^s)^2ds=\int ^{1}_{0}(9^s+4^s-2.6^s)ds=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{9^s}{\ln 9}+\frac{4^s}{\ln 4}-\frac{2.6^s}{\ln 6} \right )\)
\(=\frac{8}{\ln 9}+\frac{3}{\ln 4}-\frac{10}{\ln 6}\)
h)
Ta có \(\int ^{\frac{5\pi}{4}}_{\pi}\frac{\sin x-\cos x}{\sqrt{1+\sin 2x}}dx=\int ^{\frac{5\pi}{4}}_{\pi}\frac{\sin x-\cos x}{\sqrt{\sin^2x+\cos^2x+2\sin x\cos x}}dx\)
\(=\int ^{\frac{5\pi}{4}}_{\pi}\frac{-d(\sin x+\cos x)}{|\sin x+\cos x|}=\int ^{\frac{5\pi}{4}}_{\pi}\frac{d(\sin x+\cos x)}{\sin x+\cos x}=\left.\begin{matrix} \frac{5\pi}{4}\\ \pi\end{matrix}\right|\ln |\sin x+\cos x|=\ln (\sqrt{2})\)
Bài 3.10:
a)
Đặt \(t=1-x\) thì:
\(\int ^{2}_{1}x(1-x)^5dx=\int ^{-1}_{0}t^5(1-t)d(1-t)=\int ^{0}_{-1}t^5(1-t)dt\)
\(=\left.\begin{matrix} 0\\ -1\end{matrix}\right|\left ( \frac{t^6}{6}-\frac{t^7}{7} \right )=\frac{-13}{42}\)
b) Đặt \(\sqrt{e^x-1}=t\) \(\Rightarrow x=\ln (t^2+1)\)
Khi đó
\(\int ^{\ln 2}_{0}\sqrt{e^x-1}dx=\int ^{1}_{0}td(\ln (t^2+1))=\int ^{1}_{0}t.\frac{2t}{t^2+1}dt\)
\(=\int ^{1}_{0}\frac{2t^2}{t^2+1}dt=\int ^{1}_{0}2dt-\int ^{1}_{0}\frac{2}{t^2+1}dt=\left.\begin{matrix} 1\\ 0\end{matrix}\right|2t-\int ^{1}_{0}\frac{2dt}{t^2+1}=2-\int ^{1}_{0}\frac{2dt}{t^2+1}\)
Với \(\int ^{1}_{0}\frac{2dt}{t^2+1}\), đặt \(t=\tan m\)
\(\Rightarrow \int ^{1}_{0}\frac{2dt}{t^2+1}=\int ^{\frac{\pi}{4}}_{0}\frac{2d(\tan m)}{\tan ^2m+1}=\int ^{\frac{\pi}{4}}_{0}2\cos ^2md(\tan m)\)
\(=\int ^{\frac{\pi}{4}}_{0}2dm=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|2m=\frac{\pi}{2}\)
Do đó \(\int ^{\ln 2}_{0}\sqrt{e^x-1}dx=2-\frac{\pi}{2}\)
\(I=\int\dfrac{2}{2+5sinxcosx}dx=\int\dfrac{2sec^2x}{2sec^2x+5tanx}dx\\ =\int\dfrac{2sec^2x}{2tan^2x+5tanx+2}dx\)
We substitute :
\(u=tanx,du=sec^2xdx\\ I=\int\dfrac{2}{2u^2+5u+2}du\\ =\int\dfrac{2}{2\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{8}}du\\ =\int\dfrac{1}{\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{16}}du\\ \)
Then,
\(t=u+\dfrac{5}{4}\\I=\int\dfrac{1}{t^2-\dfrac{9}{16}}dt\\ =\int\dfrac{\dfrac{2}{3}}{t-\dfrac{3}{4}}-\dfrac{\dfrac{2}{3}}{t+\dfrac{3}{4}}dt\)
Finally,
\(I=\dfrac{2}{3}ln\left(\left|\dfrac{t-\dfrac{3}{4}}{t+\dfrac{3}{4}}\right|\right)+C=\dfrac{2}{3}ln\left(\left|\dfrac{tanx+\dfrac{1}{2}}{tanx+2}\right|\right)+C\)
- Tiệm cận đứng của đồ thị là 1 giá trị âm nên loại A và B
- Hàm đồng biến trên các khoảng xác định nên loại C
Vậy D là đáp án đúng
\(V=\dfrac{1}{3}SM.MN.NP=\dfrac{1}{3}.3.5.7=35\left(cm^3\right)\)
Ta có: \(\int\dfrac{xdx}{x^2+3}\)
Đặt \(u=x^2+3\left(u>0\right)\)
Có \(du=2xdx\)
\(\Rightarrow\int\dfrac{xdx}{x^2+3}=\)\(\int\dfrac{du}{2u}=\dfrac{1}{2}ln\left(u\right)=\dfrac{1}{2}ln\left(x^2+3\right)\)
3.5 h)
\(\int x\ln \left (\frac{x+1}{1-x}\right)dx=\int x(\ln(x+1)-\ln (1-x))dx=\int x\ln (x+1)dx-\int x\ln (1-x)dx\)
Xét \(\int x\ln (x+1)dx\). Đặt \(\left\{\begin{matrix} u=\ln (x+1)\\ dv=xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dx}{x+1}\\ v=\frac{x^2}{2}\end{matrix}\right.\)
\(\Rightarrow \int x\ln (x+1)dx=\frac{x^2\ln (x+1)}{2}-\frac{1}{2}\int \frac{x^2}{x+1}dx\)
\(=\frac{x^2\ln (x+1)}{2}-\frac{1}{2}\int \left(x-1+\frac{1}{x+1}\right)dx\)
\(=\frac{x^2\ln (x+1)}{2}-\frac{1}{2}\left(\frac{x^2}{2}-x+\ln |x+1|\right)+c\)
Tương tự, \(\int x\ln (1-x)dx=\frac{x^2\ln (1-x)}{2}-\frac{1}{2}\left (\frac{x^2}{2}+x+\ln |1-x|\right)+c\)
Do đó \(\int x\ln\left (\frac{x+1}{1-x}\right)dx=\frac{x^2\ln \left (\frac{x+1}{1-x}\right)}{2}+x-\frac{1}{2}\ln \left (\frac{x+1}{1-x}\right)+c\)
3.5 g)
Đặt \(\left\{\begin{matrix} u=\ln^2x\\ dv=\sqrt{x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2\ln x}{x}\\ v=\frac{2\sqrt{x^3}}{3}\end{matrix}\right.\)
\(\Rightarrow \int \sqrt{x}\ln ^2xdx=\frac{2\sqrt{x^3}\ln ^2x}{3}-\frac{4}{3}\int \sqrt{x}\ln xdx\)
Xét \(\int \sqrt{x}\ln xdx\)
Đặt \(\left\{\begin{matrix} m=\ln x\\ dn=\sqrt{x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dm=\frac{dx}{x}\\ n=\frac{2\sqrt{x^3}}{3}\end{matrix}\right.\)
\(\Rightarrow \int \sqrt{x}\ln xdx=\frac{2\ln x.\sqrt{x^3}}{3}-\frac{2}{3}\int \sqrt{x}dx\)
\(=\frac{2\ln x.\sqrt{x^3}}{3}-\frac{4\sqrt{x^3}}{9}+c\)
Do đó \(\int \sqrt{x}\ln^2xdx=\frac{2\ln ^2x.\sqrt{x^3}}{3}-\frac{8\ln x.\sqrt{x^3}}{9}+\frac{16\sqrt{x^3}}{27}+c\)