Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, PTGD (d1) và trục hoành là \(2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\Leftrightarrow B\left(-\dfrac{5}{2};0\right)\Leftrightarrow OB=\dfrac{5}{2}\)
PTGD (d2) và trục hoành là \(2-x=0\Leftrightarrow x=2\Leftrightarrow A\left(2;0\right)\Leftrightarrow OA=2\)
Do đó \(AB=OA+OB=\dfrac{9}{2}\)
PTHDGD (d1) và (d2) là \(2x+5=2-x\Leftrightarrow x=-1\Leftrightarrow y=3\Leftrightarrow C\left(-1;3\right)\)
Gọi H là chân đg cao từ C tới Ox thì \(CH=3\)
Do đó \(S_{ABC}=\dfrac{1}{2}CH\cdot AB=\dfrac{1}{2}\cdot\dfrac{9}{2}\cdot3=\dfrac{27}{4}\left(đvdt\right)\)
c, Vì \(-1=-1;2\ne4\) nên (d2)//(d3)
a) \(\Leftrightarrow x^2=\sqrt{4}\)
\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm2\)
b) \(\Leftrightarrow\sqrt{\left(\dfrac{1}{2}x+1\right)^2}=9\)
\(\Leftrightarrow\left|\dfrac{1}{2}x+1\right|=9\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x+1=9\\\dfrac{1}{2}x+1=-9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=16\\x=-16\end{matrix}\right.\)
c) \(\Leftrightarrow\sqrt{2x}-4\sqrt{2x}+16\sqrt{2x}=52\left(đk:x\ge0\right)\)
\(\Leftrightarrow13\sqrt{2x}=52\Leftrightarrow\sqrt{2x}=4\Leftrightarrow2x=16\Leftrightarrow x=8\left(tm\right)\)
f: Ta có: \(\sqrt{\dfrac{50-25x}{4}}-8\sqrt{2-x}+\sqrt{18-9x}=-10\)
\(\Leftrightarrow\sqrt{2-x}\cdot\dfrac{5}{2}-8\sqrt{2-x}+3\sqrt{2-x}=-10\)
\(\Leftrightarrow\sqrt{2-x}=4\)
\(\Leftrightarrow2-x=16\)
hay x=-14
\(x^4+\sqrt{x^2+2016}=2016\)
\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2016-\sqrt{x^2+2016}+\frac{1}{4}\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2016}-\frac{1}{2}\right)^2\)
\(\Leftrightarrow x^2+\frac{1}{2}=\sqrt{x^2+2016}-\frac{1}{2}\text{ }\left(do\text{ }\sqrt{x^2+2016}-\frac{1}{2}>0\right)\)
\(\Leftrightarrow x^2+1=\sqrt{x^2+2016}\)
\(t=x^2\ge0\)
\(\rightarrow t+1=\sqrt{t+2016}\Leftrightarrow t^2+2t+1=t+2016\)
\(\Leftrightarrow t^2+t-2015=0\Leftrightarrow t=\frac{-1+\sqrt{8061}}{2}\text{ }\left(do\text{ }t\ge0\right)\)
\(\Leftrightarrow x=\pm\sqrt{\frac{-1+\sqrt{8061}}{2}}\)
câu hình:
a) Vì C là điểm chính giữa cung AB \(\Rightarrow OC\bot AB\Rightarrow\angle AOC=90\)
\(\Rightarrow\angle AOC=\angle AHC\Rightarrow AOHC\) nội tiếp
b) Vì AOHC nội tiếp \(\Rightarrow\angle CHO=180-\angle CAO=180-\angle CAB=\angle CNB\)(CANB nội tiếp)
c) Xét \(\Delta CHM\) và \(\Delta ACM:\) Ta có: \(\left\{{}\begin{matrix}\angle CHM=\angle ACM=90\\\angle CMAchung\end{matrix}\right.\)
\(\Rightarrow\Delta CHM\sim\Delta ACM\left(g-g\right)\Rightarrow\dfrac{HM}{CM}=\dfrac{CM}{MA}\)
Xét \(\Delta BNM\) và \(\Delta ACM:\) Ta có: \(\left\{{}\begin{matrix}\angle BMN=\angle AMC\\\angle CAM=\angle MBN\left(ACNBnt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta BNM\sim\Delta ACM\left(g-g\right)\Rightarrow\dfrac{MN}{BM}=\dfrac{CM}{MA}\)
\(\Rightarrow\dfrac{MN}{BM}=\dfrac{MH}{CM}\) mà \(BM=CM\Rightarrow MH=MN\)
\(\Rightarrow BHCN\) là hình bình hành (2 đường chéo giao nhau tại trung điểm mỗi đường)
\(\Rightarrow\angle IHB=\angle ICN=90-\angle CNA=90-\angle CBA=45\) (C là điểm chính giữa)
mà \(\angle IHO=\angle CAO=45\Rightarrow\angle OHB=90\Rightarrow OH\bot HB\)
Ta có: \(CH^2=AH.HM\Rightarrow AH=\dfrac{CH^2}{HM}=\dfrac{NB^2}{\dfrac{1}{2}HN}=\dfrac{2BN^2}{HN}\)
Lại có: \(\angle NHB=90-\angle BHI=90-45=45\Rightarrow\Delta NHB\) vuông cân
\(\Rightarrow BN=HN\Rightarrow AH=\dfrac{2BN^2}{BN}=2BN=BN+HN\)
d) Vì \(\angle OHI=\angle BHI=45\Rightarrow HI\) là phân giác \(\angle OHB\)
\(\Rightarrow\dfrac{IO}{IB}=\dfrac{OH}{HB}\)
Xét \(\Delta OHB\) và \(\Delta CHA:\) Ta có: \(\left\{{}\begin{matrix}\angle CHA=\angle OHB=90\\\angle ACH=\angle HOB\end{matrix}\right.\)
\(\Rightarrow\Delta OHB\sim\Delta CHA\left(g-g\right)\Rightarrow\dfrac{OH}{HB}=\dfrac{CH}{AH}=\dfrac{BN}{BN+HN}=\dfrac{BN}{2BN}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{IO}{IB}=\dfrac{1}{2}\Rightarrow IB=2IO\)
câu 5 ta có: \(2021\left(x^2+y^2+z^2\right)=3xyz\)
\(=>\dfrac{x^2+y^2+z^2}{xyz}=\dfrac{3}{2021}< =>\dfrac{x}{yz}+\dfrac{y}{xz}+\dfrac{z}{xy}=\dfrac{3}{2021}\)
Áp dụng BDT Cô si
\(=>\left\{{}\begin{matrix}\dfrac{x}{yz}+\dfrac{y}{xz}\ge\dfrac{2}{z}\\\dfrac{y}{xz}+\dfrac{z}{xy}\ge\dfrac{2}{x}\\\dfrac{x}{yz}+\dfrac{z}{xy}\ge\dfrac{2}{y}\end{matrix}\right.\)\(\)
\(=>\left(\dfrac{x}{yz}+\dfrac{y}{xz}\right)+\left(\dfrac{y}{xz}+\dfrac{z}{xy}\right)+\left(\dfrac{x}{yz}+\dfrac{z}{xy}\right)\ge2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(=>\dfrac{x}{yz}+\dfrac{y}{xz}+\dfrac{z}{xy}\ge\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
\(=>\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{2021}\)
Áp dụng cố si \(=>x^2+yz\ge2x\sqrt{yz}=>\dfrac{x}{x^2+yz}\le\dfrac{1}{2\sqrt{yz}}=\dfrac{1}{4}.2.\dfrac{1}{\sqrt{y}}.\dfrac{1}{\sqrt{z}}\)\(=\dfrac{1}{4}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)\)(1)
tương tự \(=>\dfrac{y}{y^2+zx}\le\dfrac{1}{4}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)\left(2\right)\)
\(\dfrac{z}{z^2+xy}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(3\right)\)
cộng vế (1)(2)(3)
\(=>A\le\dfrac{1}{4}\left[\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y}\right]\)\(=\dfrac{1}{4}.2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(=\dfrac{1}{2}.\dfrac{3}{2021}=\dfrac{3}{4042}\). Dấu"=" xảy ra<=>\(x=y=z=\dfrac{1}{2021}\)
vậy Max \(=\dfrac{3}{4042}\)
ĐKXĐ: \(x\ge0;x\ne4\)
\(A=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}-\dfrac{12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+4\sqrt{x}+4-3\sqrt{x}+6-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)