Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}5x^2+5y^2+5xy-15=0\\2x^2+2y^2-xy+x+y=5\end{matrix}\right.\)
Trừ vế cho vế của pt trên cho pt dưới:
\(3x^2+3y^2+6xy-\left(x+y\right)-15=-5\)
\(\Leftrightarrow3\left(x+y\right)^2-\left(x+y\right)-10=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=2\\x+y=-\dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=2-x\\y=-\dfrac{5}{3}-x\end{matrix}\right.\)
Thay vào pt đầu giải pt bậc 2 một ẩn như bt
Pt đã cho có nghiệm duy nhất khi và chỉ khi:
\(m^2-4\ne0\Rightarrow m\ne\pm2\)
\(\Rightarrow\) Có \(5-\left(-5\right)+1-2=9\) giá trị nguyên của m
Lời giải:ĐK: $x\in\mathbb{R}$
PT $\Leftrightarrow 5\sqrt{x^2+5x+28}=x^2+5x+28-24$
Đặt $\sqrt{x^2+5x+28}=a(a\geq 0)$ thì pt trở thành:
$5a=a^2-24$
$\Leftrightarrow a^2-5a-24=0$
$\Leftrightarrow (a+3)(a-8)=0$
Vì $a\geq 0$ nên $a=8$
$\Leftrightarrow x^2+5x+28=64$
$\Leftrightarrow x^2+5x-36=0$
$\Leftrightarrow x=4$ hoặc $x=-9$
ĐKXĐ: \(-1\le x\le4\)
\(\Leftrightarrow\left(x-3\right)\sqrt{1+x}-\left(x-3\right)+x-x\sqrt{4-x}=2x^2-6x\)
\(\Leftrightarrow\left(x-3\right)\left(\sqrt{1+x}-1\right)+x\left(1-\sqrt{4-x}\right)=2x^2-6x\)
\(\Leftrightarrow\dfrac{x\left(x-3\right)}{\sqrt{1+x}+1}+\dfrac{x\left(x-3\right)}{1+\sqrt{4-x}}=2\left(x^2-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x=0\Rightarrow x=...\\\dfrac{1}{\sqrt{1+x}+1}+\dfrac{1}{1+\sqrt{4-x}}=2\left(1\right)\end{matrix}\right.\)
Xét (1), do \(VT< \dfrac{1}{1}+\dfrac{1}{1}=2\Rightarrow VT< VP\Rightarrow\left(1\right)\) vô nghiệm
Vậy ...
8:
\(=\dfrac{cos10-\sqrt{3}\cdot sin10}{sin10\cdot cos10}=\dfrac{2\left(\dfrac{1}{2}\cdot cos10-\dfrac{\sqrt{3}}{2}\cdot sin10\right)}{sin20}=\dfrac{sin\left(30-10\right)}{sin20}=1\)
10:
\(=\left(2-\sqrt{3}\right)^2+\left(2+\sqrt{3}\right)^2\)
=7-4căn 3+7+4căn 3=14
12:
\(=cos^270^0+\dfrac{1}{2}\left[cos60-cos140\right]\)
\(=cos^270^0+\dfrac{1}{2}\cdot\dfrac{1}{2}-\dfrac{1}{2}\cdot2cos^270^0+\dfrac{1}{.2}\)
=1/4+1/2=3/4
1.1
Pt có 2 nghiệm trái dấu và tổng 2 nghiệm bằng -3 khi:
\(\left\{{}\begin{matrix}ac< 0\\x_1+x_2=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(m+2\right)< 0\\\dfrac{2m+1}{m+2}=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m=-\dfrac{7}{5}\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
b.
Pt có nghiệm kép khi:
\(\left\{{}\begin{matrix}m+2\ne0\\\Delta=\left(2m+1\right)^2-8\left(m+2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m^2-4m-15=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)
TXĐ:\(D=R\backslash\left\{0\right\}\)
\(\Rightarrow\forall x\in D\) thì \(-x\in D\)
\(f\left(-x\right)=\dfrac{-\left(-x\right)^4+\left(-x\right)^2+1}{3\left(-x\right)}=-\dfrac{-x^4+x^2+1}{3x}=-f\left(x\right)\)
Hàm lẻ.
câu 1.
\(2x^2-x-6=0\Leftrightarrow\left(x-2\right)\left(2x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{3}{2}\end{cases}}\)
b.\(\frac{2}{x+2}=\frac{1}{2x+1}\Rightarrow2\left(2x+1\right)=x+2\Leftrightarrow3x=0\Leftrightarrow x=0\)
thay lại thấy thỏa mãn vậy pt có nghiệm x=0
.bài 4
\(d:5\left(x+2\right)+1\left(y-3\right)=0\text{ hay }5x+y+7=0\)
bài 5.
Tâm I(2,-3) bán kính 4