K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2020

tìm gía trị lớn nhất mà chị

27 tháng 11 2021

Answer:

\(\left(x^2+x+2\right).\left(x^2+x+3\right)=6\)

Ta có: \(x^2+x+2=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\forall x\)

Ta đặt: \(a=x^2+x+2\left(a>0\right)\)

Lúc này phương trình trở thành:

\(a.\left(a+1\right)=6\)

\(\Rightarrow a^2+a=6\)

\(\Rightarrow a^2+a-6=0\)

\(\Rightarrow a^2+3a-2a-6=0\)

\(\Rightarrow a.\left(a+3\right)-2.\left(a+3\right)=0\)

\(\Rightarrow\left(a-2\right).\left(a+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a-2=0\\a+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=2\\a=-3\text{(Loại)}\end{cases}}\)

Với \(a=2\)

\(\Rightarrow x^2+x+2=2\)

\(\Rightarrow x^2+x+2-2=0\)

\(\Rightarrow x^2+x=0\)

\(\Rightarrow x.\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

10 tháng 5 2019

Đề phải như này chứ bạn

\(x^2-4x+5>0\)

\(\Leftrightarrow x^2-4x+4+1>0\)

\(\Leftrightarrow\left(x-2\right)^2+1>0\)( luôn đúng )

=> đpcm

10 tháng 5 2019

\(x^2-4x+5\ge0\)

\(\Leftrightarrow x^2-4x+4+1\ge0\)

\(\Leftrightarrow\left(x-2\right)^2+1\ge0\)

=> Vậy thỏa mãn với mọi x

22 tháng 8 2018

Rút gọn hả

Ta có \(\left(x^2+x\right)^2+3.\left(x^2+x\right)+2\)

\(=\left(x^2+x\right).\left[\left(x^2+x\right)+3\right]+2\)

Vậy \(\left(x^2+x\right)^2+3.\left(x^2+x\right)+2=\left(x^2+x\right).\left[\left(x^2+x\right)+3\right]+2\)

22 tháng 8 2018

Đặt x^2+x=t

15 tháng 9 2019

Bạn ơi, hình như câu 1 sai đề bài. Bạn xem lại giùm mk nhá!

15 tháng 9 2019

đúng mà bạn

14 tháng 4 2018

Nếu:    \(x-1\ge0\)  \(\Leftrightarrow\)\(x\ge1\)  thì:   \(\left|x-1\right|=x-1\)

Khi đó ta có:      \(x^2-3x+2+x-1=0\)

                 \(\Leftrightarrow\)          \(\left(x-1\right)^2=0\)

                 \(\Leftrightarrow\)              \(x-1=0\)

                 \(\Leftrightarrow\)                \(x=1\)  (thỏa mãn)

Nếu   \(x-1< 0\)\(\Leftrightarrow\)\(x< 1\)  thì        \(\left|x-1\right|=1-x\)

Khi đó ta có:      \(x^2-3x+2+1-x=0\)

                   \(\Leftrightarrow\)     \(x^2-4x+3=0\)

                   \(\Leftrightarrow\)  \(\left(x-1\right)\left(x-3\right)=0\)

                   \(\Leftrightarrow\) \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\) (không thỏa mãn)

Vậy....

14 tháng 4 2018

Lập bảng xét dấu :

x 1 
x-1-0+

+) Nếu \(x\ge1\Leftrightarrow|x-1|=x-1\)

\(pt\Leftrightarrow x^2-3x+2+\left(x-1\right)=0\)

\(\Leftrightarrow x^2-3x+2+x-1=0\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\left(tm\right)\)

+) Nếu \(x< 1\Leftrightarrow|x-1|=1-x\)

\(pt\Leftrightarrow x^2-3x+2+\left(1-x\right)=0\)

\(\Leftrightarrow x^2-3x+2+1-x=0\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)-1=0\)

\(\Leftrightarrow\left(x-2\right)^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=-\sqrt{1}\\x-2=\sqrt{1}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-2=-1\\x-2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\) ( loại )

Vậy phương trình có tập nghiệm  \(S=\left\{1\right\}\)

10 tháng 2 2019

\(x^3-3x+2=x^3-x-2x+2=x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\)

\(=\left(x-1\right)\left[x\left(x+1\right)-2\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\Leftrightarrow x=1\\x\left(x+1\right)-2=0\end{cases}}\)

\(x\left(x+1\right)-2=0\Leftrightarrow x^2+x-2=0\Leftrightarrow x^2+x+\frac{1}{4}-\frac{9}{4}=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\Leftrightarrow x+\frac{1}{2}=\pm\frac{3}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy.......

10 tháng 2 2019

\(x^3-3x+2=0\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

7 tháng 4 2017

|x+5|+|3-x|=12

<=>|x+5|+|x-3|=12

Lập bảng xét dấu

x -5 3
x+5 - 0 + | +
x-3 - | - 0 +

Khi x<-5,phương trình trở thành

-x-5-x+3=12

<=>-2x-2=12

<=>-2x=14

<=>x=-7(TM)

Khi -5\(\le\)x\(\le\)3,phương trình trở thành

x+5-x+3=12

<=>8=12(KTM)

Khi x>3,phương trình trở thành

x+5+x-3=12

<=>2x+2=12

<=>2x=10

<=>x=5(TM)

Phương trình có 2 nghiệm x=5;x=-7