Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x-1}{3}=\dfrac{2-x}{-2}\)
\(\Rightarrow-2\left(2x-1\right)=3\left(2-x\right)\)
\(\Rightarrow-4x+2=6-3x\Rightarrow x=-4\)
a: =>1/3(2x-5)=-2/3-3/2=-4/6-9/6=-13/6
=>2x-5=-13/6*3=-13/2
=>2x=-3/2
=>x=-3/4
b: =>2/5x=-3/4-1/2=-5/4
=>x=-5/4:2/5=-5/4*5/2=-25/8
a)
\(-\dfrac{2}{3}-\dfrac{1}{3}\left(2x-5\right)=\dfrac{3}{2}\\ \Rightarrow\dfrac{1}{3}\left(2x-5\right)=-\dfrac{2}{3}-\dfrac{3}{2}\\ \Rightarrow\dfrac{1}{3}\left(2x-5\right)=-\dfrac{13}{6}\\ \Rightarrow2x-5=-\dfrac{13}{6}:\dfrac{1}{3}=-\dfrac{13}{2}\\ \Rightarrow2x=-\dfrac{13}{2}+5\\ \Rightarrow2x=-\dfrac{3}{2}\\ \Rightarrow x=-\dfrac{3}{2}:2\\ \Rightarrow x=-\dfrac{3}{4}\)
b)
\(\dfrac{2}{5}x+\dfrac{1}{2}=-\dfrac{3}{4}\\ \Rightarrow\dfrac{2}{5}x=-\dfrac{3}{4}-\dfrac{1}{2}\\ \Rightarrow\dfrac{2}{5}x=-\dfrac{5}{4}\\ \Rightarrow x=-\dfrac{5}{4}:\dfrac{2}{5}=-\dfrac{25}{8}\)
`[x-3]/5=[2x-6]/10`
`[2(x-3)]/10=[2x-6]/10`
`2x-6=2x-6`
`2x-2x=-6+6`
`0x=0` (LĐ)
Vậy `x in RR`
Lời giải:
$S=\frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+...+\frac{69}{7^{70}}$
$7S=\frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+...+\frac{69}{7^{69}}$
$6S=7S-S=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}}$
$42S=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}}$
$\Rightarrow 42S-6S=(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{68}}-\frac{69}{7^{69}})-(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{69}}-\frac{69}{7^{70}})$
$\Rightarrow 36S=1-\frac{69}{7^{69}}-\frac{1}{7^{69}}+\frac{69}{7^{70}}$
Hay $36S=1-\frac{69.7-7-69}{7^{70}}=1-\frac{407}{7^{70}}$
$\Rightarrow S=\frac{1}{36}(1-\frac{407}{7^{70}})$
\(C=\dfrac{-5}{7}+\dfrac{-2}{7}+\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{-1}{5}=-1+1-\dfrac{1}{5}=\dfrac{-1}{5}\)
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+.....+\dfrac{1}{2021.2023}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{2021.2023}\right)\)
\(=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)
\(=\dfrac{1}{2}.\left(1-\dfrac{1}{2023}\right)=\dfrac{1}{2}.\dfrac{2022}{2023}=\dfrac{1011}{2023}\)
Ta có A = \(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{2021\cdot2023}\)
= \(\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2021\cdot2023}\right)\)
= \(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}+\dfrac{1}{2023}\right)\)
= \(\dfrac{1}{2}\left(1-\dfrac{1}{2023}\right)=\dfrac{1}{2}\cdot\dfrac{2022}{2023}=\dfrac{1011}{2023}\)
\(2x^4-x^3+2x^2+1=2x^4-2x^3+2x^2+x^3-x^2+x+x^2-x+1\\ \)
\(=2x^2\left(x^2-x+1\right)+x\left(x^2-x+1\right)+\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(2x^2+x+1\right)\)
Vậy a = 2; b = 1; c = 1.
=> 2(2x +1) = 3(x-5)
=> 4x + 2 = 3x - 15
=> 4x - 3x = -15 - 2
=> x = -17
\(\dfrac{2x+1}{3}=\dfrac{x-5}{2}\)
`=> 2(2x+1)=3(x-5)`
`=> 4x +2=3x-15`
`=> 4x-3x=-15-2`
`=> x= -17`
Vậy `x=-17`
`@ ` \(\text{Mạc Nhược Hàn}\)