K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

Đề này ra só có chút to nga~~ tính máy tính cx k ra

NV
4 tháng 6 2019

\(y'=4x^3+3ax^2+2bx\)

\(y'=0\Rightarrow x\left(4x^2+3ax+b\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\4x^2+3ax+b=0\end{matrix}\right.\)

Xét \(g\left(x\right)=4x^2+3ax+b=0\) với \(\Delta=9a^2-16b\)

Hàm số luôn có 1 cực trị là \(x=0\), với \(y\left(0\right)=1\)

Dựa vào hình dáng đồ thị hàm bậc 4, để \(y\) đạt GTNN bằng 1 cũng chính là \(y\left(0\right)\) ta có các trường hợp sau:

- TH1: \(\Delta\le0\Rightarrow9a^2-16b\le0\Rightarrow b\ge\frac{9a^2}{16}\)

Khi đó \(S=a+b\ge a+\frac{9a^2}{16}=\frac{9}{16}\left(a+\frac{8}{9}\right)^2-\frac{4}{9}\ge-\frac{4}{9}\)

- TH2: \(g\left(x\right)=0\) có 2 nghiệm cùng âm \(x_1< x_2< 0\)\(y\left(x_1\right)=1\)

\(\Rightarrow\left\{{}\begin{matrix}9a^2-16b>0\\\frac{b}{4}>0\\\frac{-3a}{4}< 0\\x_1^4+ax_1^3+bx_1^2+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b< \frac{9}{16}a^2\\b>0\\a>0\\x_1^2+ax_1+b=0\end{matrix}\right.\)

Nói chung ta ko cần tìm tiếp, do \(a;b>0\Rightarrow a+b>0>-\frac{4}{9}\)

TH3: \(g\left(x\right)=0\) có 2 nghiệm cùng dương \(0< x_1< x_2\)\(y\left(x_2\right)=1\)

\(\left\{{}\begin{matrix}9a^2-16b>0\\\frac{b}{4}>0\\-\frac{3a}{4}>0\\y\left(x_2\right)=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b< \frac{9}{16}a^2\\b>0\\a< 0\end{matrix}\right.\)

\(y\left(x_2\right)=x_2^4+ax_2^3+bx_2^2+1=1\)

\(\Leftrightarrow x_2^2+ax_2+b=0\)

\(\Rightarrow\left\{{}\begin{matrix}4x_2^2+3ax_2+b=0\\x_2^2+ax_2+b=0\end{matrix}\right.\) \(\Rightarrow3x_2^2+2ax_2=0\Rightarrow x_2=-\frac{2a}{3}\)

\(\Rightarrow\frac{4a^2}{9}-\frac{2a^2}{3}+b=0\Rightarrow b=\frac{2a^2}{9}\)

\(\Rightarrow S=a+b=\frac{2a^2}{9}+a=\frac{2}{9}\left(a+\frac{9}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

So sánh 2 giá trị \(-\frac{4}{9}\)\(-\frac{9}{8}\) ta được \(S_{min}=-\frac{9}{8}\) khi \(\left\{{}\begin{matrix}a=-\frac{9}{4}\\b=\frac{9}{8}\end{matrix}\right.\)

18 tháng 11 2017

a. 32x - 5.(3.2)x + 22x.4 =0

(=) \(\left(\dfrac{3}{2}\right)^{^{2x}}-5.\left(\dfrac{3}{2}\right)^x+2^{2x}.4\) =0

đặt \(\left(\dfrac{3}{2}\right)^x=t\) đk: t > 0

=> pttt: t2 - 5t +4 =0

(=)\(\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)

(=) \(\left[{}\begin{matrix}\left(\dfrac{3}{2}\right)^x=1\\\left(\dfrac{3}{2}\right)^x=4\end{matrix}\right.\)

(=)\(\left[{}\begin{matrix}x=0\\x=\log_{\dfrac{3}{2}}4\end{matrix}\right.\)

18 tháng 11 2017

b. 3.52x + 2.72x - 5.(5.7)x =0

(=) \(3+2.\left(\dfrac{7}{5}\right)^{2x}-5.\left(\dfrac{7}{5}\right)^x=0\)

đặt \(t=\left(\dfrac{7}{5}\right)^x\) đk: t > 0

pttt: 3+2t2-5t=0

(=) \(\left[{}\begin{matrix}t=1\\t=\dfrac{3}{2}\end{matrix}\right.\)

(=)\(\left[{}\begin{matrix}x=0\\x=\log_{\dfrac{7}{5}}\dfrac{3}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2017

Lời giải:

Ta có:

\(49^x-35^x-25^x=0\)

\(\Leftrightarrow \frac{49^x}{25^x}-\frac{35^x}{25^x}-1=0\)

\(\Leftrightarrow \left(\frac{7}{5}\right)^{2x}-\left(\frac{7}{5}\right)^x-1=0\)

Đặt \(\left(\frac{7}{5}\right)^x=t\Rightarrow t^2-t-1=0\)

Ta thấy \(\Delta=5>0\Rightarrow t^2-t-1=0\) có hai nghiệm phân biệt

Theo hệ thưc Viete với $t_1,t_2$ là hai nghiệm của pt thì \(t_1t_2=-1<0 \) , do đó pt có hai nghiệm trái dấu. Vì $t>0$ nên chỉ có một nghiệm thỏa mãn.

Chỉ có một $t$ thỏa mãn đồng nghĩa với việc chỉ có một giá trị $x$ thỏa mãn

Vậy phương trình ban đầu có một nghiệm.

15 tháng 9 2020

\(2n+n^2\left(2+2n\right)2n-2n^2\left(n^2+2\right)\)

\(=2n+2n^2+4n^4-2n^4-4n^2\)

\(=2n+\left(2n^2-4n^2\right)+\left(4n^4-2n^4\right)\)

\(=2n-2n^2+2n^4\)

\(=2\left(n-n^2+n^4\right)\)

15 tháng 9 2020

Rút gọn à -.- ?

2n + n2( 2 + 2n )2n - 2n2( n2 + 2 )

= 2n + 2n3( 2 + 2n ) - 2n4 - 4n2

= 2n + 4n3 + 4n4 - 2n4 - 4n2

= 2n4 + 4n3 - 4n2 + 2n

= 2n( n3 + 2n2 - 2n + 1 )

12 tháng 3 2020

 không thấy hết

NV
21 tháng 11 2019

\(\Leftrightarrow3.\left(\frac{16}{36}\right)^x+2.\left(\frac{81}{36}\right)^x=5\)

\(\Leftrightarrow3\left(\frac{4}{9}\right)^x+2.\left(\frac{9}{4}\right)^x-5=0\)

Đặt \(\left(\frac{4}{9}\right)^x=a>0\) phương trình trở thành:

\(3a+\frac{2}{a}-5=0\Leftrightarrow3a^2-5a+2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=\frac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(\frac{4}{9}\right)^x=1\\\left(\frac{4}{9}\right)^x=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

8 tháng 3 2020

Cu em giải ko đc nha ah

 mình quên mũ 3 các bạn ạ