K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2023

1) \(\sqrt{11-6\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)

\(=\sqrt{9-6\sqrt{2}+2}-\sqrt{4-4\sqrt{2}+2}\)

\(=\sqrt{3^2-2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{2^2-2\cdot2\cdot\sqrt{2}\cdot\left(\sqrt{2}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\left|3-\sqrt{2}\right|-\left|2-\sqrt{2}\right|\)

\(=3-\sqrt{2}-2+\sqrt{2}=1\)

2) \(\sqrt{\left(1-\sqrt{2}\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\left|1-\sqrt{2}\right|-\left|2-\sqrt{2}\right|\)

\(=\sqrt{2}-1+2-\sqrt{2}\)

\(=1\)

3) \(\sqrt{\left(2\sqrt{2}-1\right)^2}-\sqrt{17+12\sqrt{2}}\)

\(=\sqrt{\left(2\sqrt{2}-1\right)^2}-\sqrt{9+12\sqrt{2}+8}\)

\(=\sqrt{\left(2\sqrt{2}-1\right)^2}-\sqrt{3^2+2\cdot3\cdot2\sqrt{2}+\left(2\sqrt{2}\right)^2}\)

\(=\sqrt{\left(2\sqrt{2}-1\right)^2}-\sqrt{\left(3+2\sqrt{2}\right)^2}\)

\(=\left|2\sqrt{2}-1\right|-\left|3+2\sqrt{2}\right|\)

\(=2\sqrt{2}-1-3-2\sqrt{2}=-4\)

4) \(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)

\(=\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{9-6\sqrt{5}+5}\)

\(=\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{3^2-2\cdot3\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)

\(=\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)

\(=\left|2-\sqrt{5}\right|+\left|3-\sqrt{5}\right|\)

\(=\sqrt{5}-2+3-\sqrt{5}=1\)

5) \(\sqrt{\left(4-3\sqrt{2}\right)^2}-\sqrt{19+6\sqrt{2}}\)

\(=\sqrt{\left(4-3\sqrt{2}\right)^2}-\sqrt{18+6\sqrt{2}+1}\)

\(=\sqrt{\left(4-3\sqrt{2}\right)^2}-\sqrt{\left(3\sqrt{2}\right)^2+2\cdot3\sqrt{2}\cdot1+1^2}\)

\(=\sqrt{\left(4-3\sqrt{2}\right)^2}-\sqrt{\left(3\sqrt{2}+1\right)^2}\)

\(=\left|4-3\sqrt{2}\right|-\left|3\sqrt{2}+1\right|\)

\(=3\sqrt{2}-4-3\sqrt{2}-1=-5\)

6) \(\sqrt{3-2\sqrt{2}}+\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\sqrt{2-2\sqrt{2}+1}+\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\sqrt{2}-1+2-\sqrt{2}=1\)

1: =3-căn 2-2+căn 2=1

2: \(=\sqrt{2}-1+2-\sqrt{2}=1\)

3: \(=2\sqrt{2}-1-3-2\sqrt{2}=-4\)

4: \(=\sqrt{5}-2+3-\sqrt{5}=1\)

5: \(=3\sqrt{2}-4-3\sqrt{2}-1=-5\)

6: \(=\sqrt{2}-1+2-\sqrt{2}=1\)

3 tháng 7 2021

\(P=\left[\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right]:\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\) (đk:\(a\ge0;a\ne1\))

\(=\left[\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]:\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{\sqrt{a}-1}\right).\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{2\sqrt{a}}\)

\(=\dfrac{1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{2\sqrt{a}}=\dfrac{\sqrt{a}+1}{2\sqrt{a}}\)

2) \(\dfrac{1}{P}\ge\dfrac{\sqrt{a}+9}{8}\)

\(\Leftrightarrow\dfrac{2\sqrt{a}}{\sqrt{a}+1}\ge\dfrac{\sqrt{a}+9}{8}\)

\(\Leftrightarrow16\sqrt{a}\ge\left(\sqrt{a}+9\right)\left(\sqrt{a}+1\right)\)

\(\Leftrightarrow a-6\sqrt{a}+9\le0\)

\(\Leftrightarrow\left(\sqrt{a}-3\right)^2\le0\)

Dấu "=" xảy ra khi \(\sqrt{a}-3=0\Leftrightarrow a=9\) (tm)

Vậy...

1) ĐKXĐ: \(a\ge0;a\ne1\)

\(P=\left[\dfrac{a+\sqrt{a}+2\sqrt{a}+2}{\left(\sqrt{a}+2\right).\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}.\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}\right]\)\(:\left[\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}\right]\)

\(\Leftrightarrow P=\left[\dfrac{\sqrt{a}.\left(\sqrt{a}+1\right)+2.\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+2\right).\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}}{\sqrt{a}-1}\right]\)\(:\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}\)

\(\Leftrightarrow P=\left[\dfrac{\left(\sqrt{a}+2\right).\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+2\right).\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}}{\sqrt{a}-1}\right].\dfrac{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}{2\sqrt{a}}\)

\(\Leftrightarrow P=\dfrac{\sqrt{a}+1-\sqrt{a}}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right).\left(\sqrt{a}+1\right)}{2\sqrt{a}}\)

\(\Leftrightarrow P=\dfrac{\sqrt{a}+1}{2\sqrt{a}}\)

2) Có : \(\dfrac{1}{P}\ge\dfrac{\sqrt{a}+9}{8}\)

\(\Leftrightarrow\dfrac{2\sqrt{a}}{\sqrt{a}+1}\ge\dfrac{\sqrt{a}+9}{8}\)

\(\Leftrightarrow\dfrac{2\sqrt{a}}{\sqrt{a}+1}-\dfrac{\sqrt{a}+9}{8}\ge0\)

\(\Leftrightarrow\dfrac{16\sqrt{a}-\left(\sqrt{a}+9\right).\left(\sqrt{a}+1\right)}{8.\left(\sqrt{a}+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{16\sqrt{a}-a-10\sqrt{a}-9}{8.\left(\sqrt{a}+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{-\left(a-6\sqrt{a}+9\right)}{8.\left(\sqrt{a}+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(\sqrt{a}-3\right)^2}{8.\left(\sqrt{a}+1\right)}\le0\)

Vì \(\sqrt{a}\ge0\Rightarrow8.\left(\sqrt{a}+1\right)>0\)  mà \(\left(\sqrt{a}-3\right)^2\) \(\ge0\) 

\(\Rightarrow\) \(\dfrac{\left(\sqrt{a}-3\right)^2}{8.\left(\sqrt{a}+1\right)}=0\) \(\Rightarrow\left(\sqrt{a}-3\right)^2=0\) \(\Leftrightarrow\sqrt{a}-3=0\Leftrightarrow\sqrt{a}=3\Leftrightarrow a=9\)

Vậy để\(\dfrac{1}{P}\ge\dfrac{\sqrt{a}+9}{8}\) thì \(a=9\)

 

5 tháng 3 2021

H và D ở đâu ra vậy em?

16 tháng 12 2021

\(ĐK:x\ge0;x\ne1\\ 1,P=\dfrac{x-2\sqrt{x}+1-x-\sqrt{x}+5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2}{\sqrt{x}-1}\\ 2,P< 0\Leftrightarrow\sqrt{x}-1< 0\left(2>0\right)\\ \Leftrightarrow\sqrt{x}< 1\Leftrightarrow0\le x< 1\)

16 tháng 12 2021

a: Theo đề, ta có:

\(\left\{{}\begin{matrix}a\cdot0+b=-2\\-3a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-2\end{matrix}\right.\)

8 tháng 1 2022

hình đây nha mnundefined

28 tháng 10 2021

\(1,ĐK:x^2-1\ge0\Leftrightarrow\left(x-1\right)\left(x+1\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\\ 2,ĐK:x\ge2\\ 3,ĐK:\left(x-1\right)\left(x-3\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le1\\x\ge3\end{matrix}\right.\\ 4,ĐK:x^2-4x-3\ge0\\ \Leftrightarrow\left(x-2+\sqrt{7}\right)\left(x-2-\sqrt{7}\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}x\le2-\sqrt{7}\\x\ge2+\sqrt{7}\end{matrix}\right.\)

28 tháng 10 2021

Tks bạn

Em tách nhỏ ra rồi hỏi nhe!! VD như 1 bài hỏi 1 lần á

3) Ta có: \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}-\dfrac{3\sqrt{5}}{4}\)

\(=\dfrac{\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{2\left(\sqrt{2}+\sqrt{3}\right)}-\dfrac{3\sqrt{5}}{4}\)

\(=\dfrac{2\sqrt{5}-3\sqrt{5}}{4}\)

\(=\dfrac{-\sqrt{5}}{4}\) 

4 tháng 11 2021

b, PTGD (d1) và trục hoành là \(2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\Leftrightarrow B\left(-\dfrac{5}{2};0\right)\Leftrightarrow OB=\dfrac{5}{2}\)

PTGD (d2) và trục hoành là \(2-x=0\Leftrightarrow x=2\Leftrightarrow A\left(2;0\right)\Leftrightarrow OA=2\)

Do đó \(AB=OA+OB=\dfrac{9}{2}\)

PTHDGD (d1) và (d2) là \(2x+5=2-x\Leftrightarrow x=-1\Leftrightarrow y=3\Leftrightarrow C\left(-1;3\right)\)

Gọi H là chân đg cao từ C tới Ox thì \(CH=3\)

Do đó \(S_{ABC}=\dfrac{1}{2}CH\cdot AB=\dfrac{1}{2}\cdot\dfrac{9}{2}\cdot3=\dfrac{27}{4}\left(đvdt\right)\)

c, Vì \(-1=-1;2\ne4\) nên (d2)//(d3)