\(\sqrt{x-2012}+\sqrt{y+2021}=4\)

x+y=17

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

điều kiện : x lớn lơn hoặc bằng 2012

y nhỏ hơn hoặc bằng 2021

ta có x+y=17=>  x=17-y thay vào pt 1

ta có : \(\sqrt{17-y-2012}+\sqrt{y+2021}=4\)

<=> \(-y-1995+y+2021+2\sqrt{\left(-y-1995\right)\left(y+2021\right)}=16\)

<=> \(2\sqrt{\left(-y-1995\right)\left(y+2021\right)}=-10\) vô nghiệm 

=> hệ pt vô nghiệm

2 tháng 6 2016

Sorry!!! mình mới học lớp 4 thôi à!!

5 tháng 8 2019

b) đk: \(x>2012;y>2013\)

pt \(\frac{16}{\sqrt{x-2012}}+\sqrt{x-2012}+\frac{1}{\sqrt{y-2013}}+\sqrt{y-2013}=10\)

\(VT\ge2\sqrt{\frac{16}{\sqrt{x-2012}}.\sqrt{x-2012}}+2\sqrt{\frac{1}{\sqrt{y-2013}}.\sqrt{y-2013}}=8+2=10\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-2012=16\\y-2013=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2028\\y=2014\end{cases}}\)

30 tháng 12 2018

\(\hept{\begin{cases}\frac{\sqrt{x^2+xy+y^2}}{|x+y|}=\frac{\sqrt{3}}{2}\left(1\right)\\x^{2012}+y^{2012}=2^{2013}\left(2\right)\end{cases}}\)

\(\left(1\right)< =>2\sqrt{x^2+xy+y^2}=\sqrt{3}|x+y|\)

\(< =>4\left(x^2+xy+y^2\right)=3\left(x+y\right)^2\)

\(< =>4x^2+4xy+4y^2=3x^2+6xy+3y^2\)

\(< =>\left(x-y\right)^2=0\)

\(< =>x=y\)

\(\left(2\right)< =>2x^{2012}=2^{2013}\)

\(< =>x^{2012}=2^{2012}\)

\(< =>\orbr{\begin{cases}x=y=2\\x=y=-2\end{cases}}\)

Vậy (x;y) thuộc (2;2) hoặc (-2;-2)

1 tháng 2 2020

xét x=y,x>y và x<y chú ý tới điều kiện x,y thuộc -1;1 nữa 

3 tháng 10 2019

1

1 tháng 7 2017

Giả sử z là số lớn nhất trong 3 số 

Từ đề bài ta có:

\(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\)

\(\Leftrightarrow\sqrt{x+2012}-\sqrt{x+2011}+\sqrt{y+2013}-\sqrt{y+2012}=\sqrt{z+2012}-\sqrt{z+2011}+\sqrt{z+2013}-\sqrt{z+2012}\)

\(\Leftrightarrow\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}+\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}=\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}+\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)

Ta lại có:

\(\hept{\begin{cases}\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}\ge\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}\\\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}\ge\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\end{cases}}\)

Dấu = xảy ra khi x = y = z

Tương tự cho trường hợp x lớn nhất với y lớn nhất.

5 tháng 7 2017

fdy 'rshniytguo;yhuyt65edip;ioy86fo87ogtb eubuiltgr6sdwjhytguyh8 ban oi bai nay mac kho giai vao cut sit