K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\hept{\begin{cases}\sqrt{2x+3}+x^2+2x=\sqrt{2y-1}+y^2-2y\left(1\right)\\\sqrt{x-2}+\sqrt{y-1}=3\left(2\right)\end{cases}}\)

\(Đkxđ:x\ge2;y\ge1\)

\(\left(1\right)\Leftrightarrow\sqrt{2x+3}-\sqrt{2y-1}=y^2-x^2-2\left(y+x\right)\)

\(\frac{2x-2y+4}{\sqrt{2x+3}+\sqrt{2y-1}}=\left(x+y\right)\left(y-x\right)-2\left(y+x\right)\)

\(\Leftrightarrow\frac{2\left(x-y+2\right)}{\sqrt{2x+3}+\sqrt{2y-1}}+\left(x+y\right)\left(x-y+2\right)=0\)

\(\Leftrightarrow\left(x-y+2\right)\left(\frac{2}{\sqrt{2x+3}+\sqrt{2y-1}}+x+y\right)=0\)

\(\Leftrightarrow x-y+2=0\)

\(\Leftrightarrow x=y-2\)

Thay vào \(\left(2\right)\) ...................................................................

1 tháng 12 2021

Giải hệ phương trình: \(\left\{\begin{matrix} xy-y^2-x+2y=\sqrt{y-1}+1-\sqrt{x} - Hy Vũ

NV
5 tháng 3 2020

ĐKXĐ: ...

Bình phương 2 vế pt đầu:

\(\Leftrightarrow\sqrt{\left(2x-y-1\right)\left(3y+1\right)}=\sqrt{x^2+2xy}\)

\(\Leftrightarrow x^2+3y^2-4xy+4y-2x+1=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(x-3y-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y+1\\x=3y+1\end{matrix}\right.\)

Thay xuống pt dưới được pt bậc 3 và bấm máy bình thường

17 tháng 10 2020

a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)

Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)

Th2: \(x,y\ne1\)

\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)

Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0

Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)

Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4

Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)

17 tháng 10 2020

b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)

Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)

* Th1: \(x^2+2y^2=0\)(*)

Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ

* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\) 

Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

4 tháng 11 2019

ĐKXĐ: ....

PT (1)\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2+x+y+2\right)=0\)

Dễ thấy cái ngoặc to >0. Do đó x = y.

Thay vào PT (2) \(\Leftrightarrow\sqrt{5-x}+\sqrt{x}+\sqrt{3x-1}=x^2+3x+1\)

Đến đây chắc là có đk: \(\frac{1}{3}\le x\le5\). Nghiệm xấu, anh tự giải nốt:D