Giải hệ pt : \(x+y+\sqrt{x^2+y^2}=12\)

       ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

\(\hept{\begin{cases}\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=12\\\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)=28\end{cases}}\)

\(\Rightarrow\sqrt{x}+\sqrt{y}=\frac{12}{\sqrt{xy}}\)

\(\Rightarrow\frac{12}{\sqrt{xy}}\left(x+y-\sqrt{xy}\right)=28\)

\(\Leftrightarrow\frac{x+y-\sqrt{xy}}{\sqrt{xy}}=\frac{7}{3}\)

\(\Leftrightarrow\frac{x+y}{\sqrt{xy}}=\frac{4}{3}\)

tc \(x+y\ge2\sqrt{xy}\)

\(\Rightarrow\frac{x+y}{\sqrt{xy}}\ge2>\frac{4}{3}\)=>pt vô nghiệm

14 tháng 10 2017

Lời giải:

Đặt \(\left(\sqrt{x},\sqrt{y}\right)=\left(a,b\right)\)

Khi đó hệ phương trình chuyển về: \(\hept{\begin{cases}ab\left(a+b\right)=12\\a^3+b^3=28\end{cases}}\Leftrightarrow\hept{\begin{cases}ab\left(a+b\right)=12\\\left(a+b\right)^3-3ab\left(a+b\right)=28\end{cases}}\)

Lấy 3 lần PT (1) +PT (2) thu được: \(\left(a+b\right)^3=28+36=64\Rightarrow a+b=4\)

Mà \(ab\left(a+b\right)=12\Rightarrow ab=3\)

Khi đó, áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của pt: \(x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

Hay \(\left(a,b\right)=\left(1,3\right)\) và hoán vị hay \(\left(x,y\right)=\left(1,9\right)\) và hoán vị.

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Bài 1:

ĐKXĐ: $-2\leq x\leq 2$

Đặt $\sqrt{2-x}=a; \sqrt{2+x}=b(a,b\geq 0)$

Ta có: \(\left\{\begin{matrix} a+b+ab=2\\ a^2+b^2=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=2-ab\\ (a+b)^2-2ab=4\end{matrix}\right.\)

\(\Rightarrow (2-ab)^2-2ab=4\)

\(\Leftrightarrow (ab)^2-6ab=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=6\end{matrix}\right.\)

Nếu $ab=0\Rightarrow a+b=2$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-2X=0\Rightarrow (a,b)=(0,2); (2,0)$

$\Rightarrow x=2$

Nếu $ab=6\Rightarrow a+b=-4$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2+4X+6=0$ (pt này vô nghiệm)

Vậy $x=2$

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Bài 2:

ĐK: $x\geq \frac{-1}{3}

PT \(\Leftrightarrow \sqrt{5x+7}=\sqrt{x+3}+\sqrt{3x+1}\)

\(\Rightarrow 5x+7=4x+4+2\sqrt{(x+3)(3x+1)}\)

\(\Leftrightarrow x+3=2\sqrt{(x+3)(3x+1)}\)

\(\Leftrightarrow \sqrt{x+3}(\sqrt{x+3}-2\sqrt{3x+1})=0\)

Vì $x\geq \frac{-1}{3}$ nên $\sqrt{x+3}\neq 0$

Do đó $\sqrt{x+3}-2\sqrt{3x+1}=0$

$\Rightarrow x+3=4(3x+1)$

$\Rightarrow x=-\frac{1}{11}$ (thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 1:

ĐK:...........

PT\((1)\Rightarrow x+y+2\sqrt{(x+y)(x-y)}+x-y=16\) (bình phương 2 vế)

\(\Leftrightarrow x+\sqrt{x^2-y^2}=8\)

\(\Leftrightarrow \sqrt{x^2-y^2}=8-x\Rightarrow \left\{\begin{matrix} 8-x\geq 0\\ x^2-y^2=(8-x)^2=x^2-16x+64\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\leq 8\\ y^2=16x-64\end{matrix}\right.\)

Thay vào PT(2) ta có:

\(x^2+16x-64=128\)

\(\Leftrightarrow x^2+16x-192=0\Rightarrow \left[\begin{matrix} x=8\\ x=-24\end{matrix}\right.\)

Nếu \(x=8\Rightarrow y^2=16x-64=64\Rightarrow y=\pm 8\) (thỏa mãn)

Nếu $x=-24\Rightarrow y^2=16x-64< 0$ (vô lý-loại)

Vậy $(x,y)=(8,\pm 8)$

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 2:

Ta thấy:

\(x^2-4x+11=(x^2-4x+4)+7=(x-2)^2+7\geq 0, \forall x\)

\(x^4-8x^2+21=(x^4-8x^2+16)+5=(x^2-4)^2+5\geq 5, \forall x\)

Do đó:

\((x^2-4x+11)(x^4-8x^2+21)\geq 7.5=35\)

Dấu "=" xảy ra khi \((x-2)^2=(x^2-4)^2=0\Leftrightarrow x=2\)

Vậy.......

Bài 1: 

b: \(\Leftrightarrow2+\sqrt{3x-5}=x+1\)

\(\Leftrightarrow\sqrt{3x-5}=x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=3x-5\\x>=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+6=0\\x>=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;3\right\}\)

c: \(\Leftrightarrow5x+7=16\left(x+3\right)\)

=>16x+48=5x+7

=>11x=-41

hay x=-41/11

25 tháng 7 2016

hiểu chưa 

25 tháng 7 2016

hieu chet lien