Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2\right)\left(\dfrac{360}{x}-6\right)=360\)
\(ĐK:x\ne0\)
\(\Leftrightarrow\left(x+2\right)\left(\dfrac{360-6x}{x}\right)=360\)
\(\Leftrightarrow360-6x+\dfrac{720-12x}{x}=360\)
\(\Leftrightarrow360x-6x^2+720-12x=360x\)
\(\Leftrightarrow6x^2+12x-720=0\)
\(\Delta=12^2-4.6.\left(-720\right)\)
\(=17424>0\)
`->` pt có 2 nghiệm
\(\left\{{}\begin{matrix}x_1=\dfrac{-12-\sqrt{17424}}{12}=-12\\x_2=\dfrac{-12+\sqrt{17424}}{12}=10\end{matrix}\right.\) ( tm )
Vậy \(S=\left\{-12;10\right\}\)
đkxđ x khác 6
(x+2).360/x-6=360
360x + 720 =360x - 2160
360x -360x = -2160 -720
x = -2880
ĐKXĐ: \(x\ne0\)
Ta có: \(\left(x-6\right)\left(\dfrac{360}{x}+2\right)=360\)
=> \(360+2x-\dfrac{2160}{x}-12=360\)
<=> \(\dfrac{2x^2-12x-2160}{x}=0\)
=> \(x^2-6x-1080=0\)
<=> \(\left(x^2+30x\right)-\left(36x+1080\right)=0\)
<=> \(\left(x+30\right)\left(x-36\right)=0\)
<=> \(\left[{}\begin{matrix}x=-30\\x=36\end{matrix}\right.\) ( TM)
Vậy ....................................
a, tự giải nha. k giải đc thì liên hệ mình
b) từ (1) => \(x=\frac{a+2y}{a}=1+\frac{2y}{a}\)(3)
thay (3) vào (2) ta có: \(-2.\frac{a+2y}{a}+y=a+1\Rightarrow-2a-4y+ay-a^2-a=0\Leftrightarrow\left(a-4\right)y-a^2-3a=0\left(4\right)\)
=> hệ có nghiệm duy nhất <=> (4) có nghiệm duy nhất <=> a-4 khác 0 <=> a khác 4
(4) <=> \(y=\frac{a\left(a+3\right)}{a-4}\Rightarrow x=1+2\frac{a\left(a+3\right)}{a-4}.\frac{1}{a}=\frac{a-4+2a+6}{a-4}=\frac{3a+2}{a-4}\),
xy=1 <=> \(\frac{\left(a^2+3a\right)\left(3a+2\right)}{\left(a-4\right)^2}=1\Leftrightarrow3a^3+11a^2+6a=a^2-8a+16\Leftrightarrow3a^3+10a^2+14a-16=0\)
bạn tự giải và kết luận nha
a) Thay 1 vào m, ta có:
\(\hept{\begin{cases}x+1y=1+1\\1x-y=3\times1-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+1y=2\\x=2+y\end{cases}}\)
Thế giá trị đã cho vào phương trình:\(2+y+1y=2\)
\(\Leftrightarrow2+2y=2\)
\(\Leftrightarrow2y=0\Rightarrow y=0\)
Thay giá trị đó vào phương trình:\(x=2+0\Rightarrow x=2\)
\(\left\{{}\begin{matrix}\left(x-2\right)\left(y+1\right)=xy\\\left(x+8\right)\left(y-2\right)=xy\end{matrix}\right.\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\\\ \) \(\left\{{}\begin{matrix}xy+x-2y-2-xy=0\\xy-2x+8y-16-xy=0\end{matrix}\right.\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \)\(\left\{{}\begin{matrix}x-2y=2\\-2x+8y=16\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-2y=2\\-x+4y=8\end{matrix}\right.\)\(\left\{{}\begin{matrix}2y=10\\x-2y=2\end{matrix}\right.\) \(\left\{{}\begin{matrix}y=5\\x-10=2\end{matrix}\right.\)\(\left\{{}\begin{matrix}y=5\\x=12\end{matrix}\right.\)
Vậy hpt có nghiệm duy nhất là (x;y) = (12;5)
Ta có: \(\left\{{}\begin{matrix}\left(x-2\right)\left(y+1\right)=xy\\\left(x+8\right)\left(y-2\right)=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x-2y-2-xy=0\\xy-2x+8y-16-xy=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y-2=0\\-2x+8y-16=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=2\\-2x+8y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=4\\-2x+8y=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4y=20\\x-2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=2+2y=2+2\cdot5=12\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=12\\y=5\end{matrix}\right.\)
\(\left(x+6\right)\left(\frac{360}{x}+2\right)-12=360\) (\(x\ne0\))
\(\Leftrightarrow\left(x+6\right)\left(\frac{360}{x}+2\right)=372\)
\(\Leftrightarrow360+2x+\frac{2160}{x}+12=372\)
\(\Leftrightarrow360x+2x^2+2160+12x=372x\)
\(\Leftrightarrow x^2=-2160\)( vô lý )
=> phương trình vô nghiệm
\(110\%x+115\%y=400\\ \Rightarrow1.1x+1.15y=400\\ x+y=360\\ \Leftrightarrow1.1\left(x+y\right)=360\cdot1.1=396\\ \Rightarrow\left(1.1x+1.15y\right)-1.1\left(x+y\right)=1.1x+1.15y-1.1x-1.1y=0.05y=4\\ \Leftrightarrow y=\dfrac{4}{0.05}=80\\ \Rightarrow x=360-80=280.\)
\(x.y=360\)
e chỉ liệt kê vài Ư thôi nha !
\(\Rightarrow x;y\inƯ\left(360\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;...;\pm120;...\right\}\)
b, thực hiện như vậy !!!