Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^2+2xy+y^2=4\left(1\right)\\-x^2+xy+2y^2=0\left(2\right)\end{cases}}\)\(< =>\hept{\begin{cases}x^2+2xy+y^2=4\left(3\right)\\x^2+2xy+2y^2=2x^2+xy\left(4\right)\end{cases}}\)
Lấy pt 1 cộng pt 2 có : \(3xy+3y^2=4\)
Lấy pt 4 trừ pt 3 có : \(y^2=2x^2+xy-4< =>4=2x^2+xy-y^2\)
\(< =>2x^2+3xy+3y^2-2xy-4y^2=4\)
\(< =>2x^2-2xy-4y^2=0\)
\(< =>x=y-4y^2\)\(< =>x=y\left(1-4y\right)\)
bài này bạn chỉ cần sd hđt là xong nhé :)) ko cần dài dòng như mình
Bình phương trình đầu trừ phương trình thứ hai cho ta được nhân tử (x - 1)xy(2y + 2x - 1) = 0
P/s: Đến đây là dễ rồi, tự làm nốt nhé bn!
bạn lấy 2 lần phương trình 2 trừ phương trình 1 được: (x-y+2)2 = 0 nhé!
\(\hept{\begin{cases}x^2+y^4-2xy^3=0\left(1\right)\\x^2+2y^2-2xy=1\left(2\right)\end{cases}}\)
Thế (2) vào 1 ta được
\(\left(x^2+2y^2-2xy\right)x^2+y^4-2xy^3=0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+y^2\right)=0\)
\(\Leftrightarrow x=y\)
Thế vô (2) ta được
\(x^2+2x^2-2x^2=1\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^4=2xy^3&\left(x-y\right)^2+y^2=1&\end{cases}}\)
áp dụng bđt cô si ta có:
\(x^2+y^4\ge2xy^2\Leftrightarrow2xy^3\ge2xy^2\Rightarrow y\ge1\)
\(\Rightarrow\left(x-y\right)^2+y^2\ge0+1=1\Rightarrow x=y=1\)