K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2021

\(\left\{{}\begin{matrix}x^2-xy+y^2=3\\z^2+yz+1=0\end{matrix}\right.\)

Cộng 2 vế của 2 BĐT trên ta được:

x2 - xy + y2 + z2 + yz + 1 = 3

\(\Leftrightarrow\) 2x2 - 2xy + 2y2 + 2z2 + 2yz - 4 = 0

\(\Leftrightarrow\) x2 - 2xy + y2 + y2 + 2yz + z2 + x2 - 4 + z2 = 0

\(\Leftrightarrow\) (x - y)2 + (y + z)2 + z2 + (x - 2)(x + 2) = 0

Ta có: (x - y)\(\ge\) 0 với mọi x; y

(y + z)\(\ge\) 0 với mọi y; z

z2 \(\ge\) 0 với mọi z

\(\Rightarrow\) (x - y)2 + (y + z)2 + z\(\ge\) 0 với mọi x; y; z

\(\Rightarrow\) (x - 2)(x + 2) \(\ge\) 0 

Dấu "=" xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2-y=0\\y+z=0\\z=0\\\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\end{matrix}\right.\)

Với x = 2 ta có: (2 - y)2 + (y + z)2 + z2 = 0

Dấu "=" xảy ra 

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2-y=0\\y+z=0\\z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=2\\z=0\end{matrix}\right.\)

Thử lại thấy KTM

Với x = -2 ta có: (-2 - y)2 + (y + z)2 + z2 = 0

Dấu "=" xảy ra

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-2-y=0\\y+z=0\\z=0\end{matrix}\right.\) (Vô nghiệm)

Vậy hpt vô nghiệm 

Mk ko chắc lắm ;-; (ko bt đúng ko :v)

 

11 tháng 1 2021

Xét pt thứ 2 là pt bậc 2 so với ẩn z.

Ta có \(\Delta=y^2-4\ge0\Leftrightarrow y^2\ge4\).

Do đó ta có: \(x^2-xy+y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge3\).

Đẳng thức xảy ra khi và chỉ khi \(y^2=4;x=\dfrac{1}{2}y\).

+) y = 2 \(\Rightarrow x=1;z=-1\).

+) \(y=-2\Rightarrow x=-1;z=1\).

8 tháng 8 2017

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

8 tháng 8 2017

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

22 tháng 11 2017

\(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\Rightarrow x-y=y-z=z-x=0\)\(\Rightarrow x=y=z\)

\(\Rightarrow x^{2010}+y^{2010}+z^{2010}=3x^{2010}=3^{2010}\)

\(\Rightarrow x^{2010}=\dfrac{3^{2010}}{3}=3^{2009}\Rightarrow x=\sqrt[2010]{3^{2009}}\)

\(\Rightarrow x=y=z=\sqrt[2010]{3^{2009}}\)

AH
Akai Haruma
Giáo viên
22 tháng 11 2017

Lời giải:

PT (1)

\(\Leftrightarrow x^2+y^2+z^2-(xy+yz+xz)=0\)

\(\Leftrightarrow 2(x^2+y^2+z^2)-2(xy+yz+xz)=0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)

Thấy rằng \((x-y)^2; (y-z)^2; (z-x)^2\geq 0\forall x,y,z\in\mathbb{R}\)

\(\Rightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} (x-y)^2=0\\ (y-z)^2=0\\ (z-x)^2=0\end{matrix}\right.\Leftrightarrow x=y=z\)

Thay vào PT (2)

\(\Leftrightarrow x^{2010}+x^{2010}+x^{2010}=3^{2010}\)

\(\Leftrightarrow 3.x^{2010}=3^{2010}\Leftrightarrow x^{2010}=3^{2009}\)

\(\Leftrightarrow x=\sqrt[2010]{3^{2009}}\)

Vậy \((x,y,z)=(\sqrt[2010]{3^{2009}},\sqrt[2010]{3^{2009}},\sqrt[2010]{3^{2009}})\)

22 tháng 11 2017

mk nghĩ đề là \(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)

AH
Akai Haruma
Giáo viên
19 tháng 1 2017

Bài này đơn giản thôi :))

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} \frac{x+y}{xy}=\frac{3}{2}\\ \frac{y+z}{yz}=\frac{2}{3}\\ \frac{x+z}{xz}=\frac{7}{6}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}=\frac{3}{2}\\ \frac{1}{y}+\frac{1}{z}=\frac{2}{3}\\ \frac{1}{x}+\frac{1}{z}=\frac{7}{6}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{2}{x}=\frac{3}{2}+\frac{7}{6}-\frac{2}{3}\\ \frac{2}{y}=\frac{3}{2}+\frac{2}{3}-\frac{7}{6}\\ \frac{2}{z}=\frac{2}{3}+\frac{7}{6}-\frac{3}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=2\\ z=6\end{matrix}\right.\)

Vậy $(x,y,z)=(1,2,6)$ là nghiệm của hệ phương trình

b: =>x^2-y^2-4y-2x-3=0 và x^2+2x+y=0

=>x^2-2x+1-y^2-4y-4=0 và x^2+2x+y=0

=>x=1 và y=-2 và x^2+2x+y=0

=>Hệ vô nghiệm

a: \(\Leftrightarrow\left\{{}\begin{matrix}z=2x-5\\y=3-2x+z=3-2x+2x-5=-2\\3x-2\cdot\left(-2\right)+2x-5=14\end{matrix}\right.\)

=>y=-2; 3x+4+2x-5=14; z=2x-5

=>y=-2; x=3; z=2*3-5=1

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} x(x+y+z)=2\\ y(y+z+x)=3\\ z(z+x+y)=4\end{matrix}\right.(*)\).

Dễ thấy $x+y+z\neq 0$. Khi đó ta có:

\(\frac{x}{y}=\frac{x(x+y+z)}{y(y+z+x)}=\frac{2}{3}(1)\)

\(\frac{y}{z}=\frac{y(y+z+x)}{z(z+x+y)}=\frac{3}{4}(2)\)

Từ \((1);(2)\Rightarrow \frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) .

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k; y=3k; z=4k\)

Thay vào PT thứ nhất của $(*)$ suy ra:

\(2k(2k+3k+4k)=2\)

\(\Leftrightarrow 18k^2=2\Rightarrow k=\pm \frac{1}{3}\)

Nếu \(k=\frac{1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{2}{3}; 1; \frac{4}{3})\)

Nếu \(k=\frac{-1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{-2}{3}; -1; \frac{-4}{3})\)

24 tháng 2 2018

Câu 1 \(\left\{{}\begin{matrix}2x+2y+2xy=10\left(1\right)\\x^2+y^2=5\left(2\right)\end{matrix}\right.\)

=>2.(2) - (1)=\(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)

<=>\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\x-y=0\end{matrix}\right.\) =>x=y=1

Câu 2 dùng vi-et đảo

Câu 3 rút x=y+1 từ pt trên rồi thế xuống dưới

Câu 4 lấy pt trên cộng pt dưới rồi xét dấu GTTĐ