\(\left\{{}\begin{matrix}y+y^3x=-6x^2\\1+x^3y^3=19x^2\end{matrix}\right.\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2020

À đúng rồi anh. Đề là 1 + x3y3 = 19x3

NV
27 tháng 9 2020

Mình có thể chắc là bải này bị sai đề (vì hình như đã giải 2, 3 lần bài giống hệt như vầy ở đây rồi)

Đề phải là \(1+x^3y^3=19x^3\) thì mới giải được

NV
14 tháng 10 2020

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(xy+1\right)=-6x^2\\\left(xy+1\right)\left(x^2y^2-xy+1\right)=19x^3\end{matrix}\right.\)

Nhận thấy \(x=0\) ko phải nghiệm, chia vế cho vế:

\(\frac{y}{x^2y^2-xy+1}=\frac{-6}{19x}\)

\(\Leftrightarrow-19xy=6x^2y^2-6xy+6\)

\(\Leftrightarrow6x^2y^2+13xy+6=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=-\frac{2}{2}\\xy=-\frac{3}{2}\end{matrix}\right.\)

Thay xuống pt dưới ...

AH
Akai Haruma
Giáo viên
5 tháng 8 2018

Lời giải:

Lấy PT thứ nhất cộng phương trình thứ 2:

\(\Rightarrow 4(x+y)=\frac{1}{x^2}+\frac{1}{y^2}>0\Rightarrow x+y>0\)

Lấy PT thứ nhất trừ đi phương trình thứ 2:

\((3x+y)-(3y+x)=\frac{1}{x^2}-\frac{1}{y^2}\)

\(\Leftrightarrow 2(x-y)=\frac{y^2-x^2}{x^2y^2}\)

\(\Leftrightarrow (x-y)\left(2+\frac{x+y}{x^2y^2}\right)=0\)

\(x+y>0\Rightarrow 2+\frac{x+y}{x^2y^2}>0\)

Do đó: \(x-y=0\Rightarrow x=y\). Thay vào pt thứ nhất:

\(4x=\frac{1}{x^2}\Rightarrow 4x^3=1\Rightarrow x=\sqrt[3]{\frac{1}{4}}=y\)

5 tháng 8 2018

em cảm ơn ạ!!!!!!!!!!

hệ phương trình 1 ,\(\left\{{}\begin{matrix}\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{3}{2}\\3x-2y=5\end{matrix}\right.\) 3, \(\left\{{}\begin{matrix}\frac{x^2-y-6}{x}=x-2\\x+3y=8\end{matrix}\right.\) 4, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{2}{3}\\x+y=10\end{matrix}\right.\) 5, \(\left\{{}\begin{matrix}\frac{y^2+2x-8}{y}=y-3\\x+y=10\end{matrix}\right.\) 6 ,...
Đọc tiếp

hệ phương trình

1 ,\(\left\{{}\begin{matrix}\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{3}{2}\\3x-2y=5\end{matrix}\right.\)

3, \(\left\{{}\begin{matrix}\frac{x^2-y-6}{x}=x-2\\x+3y=8\end{matrix}\right.\)

4, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{2}{3}\\x+y=10\end{matrix}\right.\)

5, \(\left\{{}\begin{matrix}\frac{y^2+2x-8}{y}=y-3\\x+y=10\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}\frac{x+1}{y-1}=5\\3\left(2x-2\right)-4\left(3x+4\right)=5\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}2x+y=4\\\left|x-2y\right|=3\end{matrix}\right.\)

8 , \(\left\{{}\begin{matrix}\frac{2x}{x+1}+\frac{y}{y+1}=3\\\frac{x}{x+1}-\frac{3y}{y+1}=-1\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}y-\left|x\right|=1\\2x-y=1\end{matrix}\right.\)

10 , \(\left\{{}\begin{matrix}\sqrt{x+3y}=\sqrt{3x-1}\\5x-y=9\end{matrix}\right.\)

0
25 tháng 9 2019

có ái đó giúp mình với mình đang cần gấp

19 tháng 8 2019

\(\left\{{}\begin{matrix}x^2=3x+2y\left(1\right)\\y^2=3y+2x\left(2\right)\end{matrix}\right.\)

Trừ theo vế 2 pt ta được :

\(x^2-y^2=3x+2y-3y-2x\)

\(\Leftrightarrow x^2-y^2=x-y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+y-1=0\end{matrix}\right.\)

TH1: \(x-y=0\Leftrightarrow x=y\)

\(\left(1\right)\Leftrightarrow x^2=3x+2x\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=5\\y=5\end{matrix}\right.\end{matrix}\right.\)

TH2: \(x+y-1=0\)

\(\Leftrightarrow x=1-y\)

\(\left(1\right)\Leftrightarrow\left(1-y\right)^2=3\left(1-y\right)+2y\)

\(\Leftrightarrow y^2-y-2=0\)

\(\Leftrightarrow\left(y-2\right)\left(y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\end{matrix}\right.\)

Vậy....