Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
1/ \(\left\{{}\begin{matrix}x^3+y^3=1\left(1\right)\\x^2y+2xy^2+y^3=2\left(2\right)\end{matrix}\right.\)
Lấy (1). 2 - (2) ta được:
\(2x^3+y^3-x^2y-2xy^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(2x-y\right)=0\)
Đến đây dễ rồi nhé ^^
2/ Ta viết lại pt thứ 2 của hệ:
\(y^2-4\left(x+2\right)y+16+16x-5x^2=0\)
\(\Leftrightarrow y^2-4\left(x+2\right)y+4\left(x+2\right)^2-9x^2=0\)
\(\Leftrightarrow\left[y-2\left(x+2\right)\right]^2-\left(3x\right)^2=0\)
\(\Leftrightarrow\left(x+y-4\right)\left(y-5x-4\right)=0\)
Bạn làm tiếp nhé!
3/ Ta viết lại pt thứ nhất của hệ
\(x^2-x\left(2y-3\right)+y^2-3y-4=0\)
\(\Leftrightarrow x^2-x\left(2y-3\right)+\dfrac{4y^2-12y+9}{4}-\dfrac{25}{4}=0\)
\(\Leftrightarrow\left(x-\dfrac{2y+3}{2}\right)^2-\left(\dfrac{5}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-y-4\right)\left(x-y+1\right)=0\)
Bạn làm tiếp được chứ?
4/ Viết lại pt thứ 2 của hệ
\(\left(y+\sqrt{x}\right)^2-\left(y\sqrt{x}\right)^2=0\)
\(\Leftrightarrow\left(y-\sqrt{x}-y\sqrt{x}\right)\left(y-\sqrt{x}+y\sqrt{x}\right)=0\)
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
1,\(\left\{{}\begin{matrix}x=y^2-1\\\sqrt{y^2+3}+y^2-1=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y^2-1\\\sqrt{y^2+3}+y^2+3-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y^2-1\\\left(\sqrt{y^2+3}-2\right)\left(\sqrt{y^2+3}+3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y^2-1=0\\y^2=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)
Câu 1.
Điều kiện: \(x^2\ge2y+1\)
Từ $(1)$ ta được \(\left(x^2-2y\right)\left(x-y\right)=0\Leftrightarrow\left[{}\begin{matrix}x^2=2y\left(L\right)\\x=y\end{matrix}\right.\)
Khi đó $(2)$ \(\Leftrightarrow2\sqrt{x^2-2x-1}+\sqrt[3]{x^3-14}=x-2\Leftrightarrow2\sqrt{x^2-2x-1}+\sqrt[3]{x^3-14}-\left(x-2\right)=0\)
\(\begin{array}{l} \Leftrightarrow 2\sqrt {{x^2} - 2x - 1} + \dfrac{{{x^3} - 14 - {{\left( {x - 2} \right)}^3}}}{{\sqrt[3]{{{{\left( {{x^3} - 14} \right)}^2}}} + \sqrt[3]{{\left( {{x^3} - 14} \right)}}\left( {x - 2} \right) + {{\left( {x - 2} \right)}^2}}} = 0\\ \Leftrightarrow 2\sqrt {{x^2} - 2x + 1} + \dfrac{{6{x^2} - 12x - 6}}{{\sqrt[3]{{{{\left( {{x^3} - 14} \right)}^2}}} + \sqrt[3]{{\left( {{x^3} - 14} \right)}}\left( {x - 2} \right){{\left( {x - 2} \right)}^2}}} = 0\\ \Leftrightarrow 2\sqrt {{x^2} - 2x + 1} \left[ {1 + \dfrac{{3\sqrt {{x^2} - 2x - 1} }}{{\sqrt[3]{{{{\left( {{x^3} - 14} \right)}^2}}} + \sqrt[3]{{\left( {{x^3} - 14} \right)}}\left( {x - 2} \right){{\left( {x - 2} \right)}^2}}}} \right] = 0 \Leftrightarrow \sqrt {{x^2} - 2x - 1} = 0 \end{array} \)
Từ đó ta được \(x^2-2x-1=0\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{2}\Rightarrow y=1+\sqrt{2}\\x=1-\sqrt{2}\Rightarrow y=1-\sqrt{2}\end{matrix}\right.\)
Vậy hệ phương trình đã cho có nghiệm $(x;y)=$\(\left\{\left(1+\sqrt{2};1+\sqrt{2}\right),\left(1-\sqrt{2};1-\sqrt{2}\right)\right\}\)
Câu 2.
Điều kiện: \(y \ge 0,x \ge -2\)
Từ phương trình $(1)$ tương đương:
$$2\sqrt{x+y^2+y+3}=3\sqrt{y}+\sqrt{x+2}$$
Ta có:
$$3\sqrt y + \sqrt {x + 2} = \sqrt 3 .\sqrt {3y} + 1.\sqrt {x + 2} \le 2\sqrt {3y + x + 2}$$
Ta chứng minh:
$$2\sqrt {3y + x + 2} \le 2\sqrt {x + {y^2} + y + 3} \Leftrightarrow {\left( {y - 1} \right)^2} \ge 0$$
Đẳng thức xảy ra khi $y=1$ và \(\sqrt{y}=\sqrt{x+2}\Rightarrow x=-1\)
Thay vào phương trình $(2)$ thấy thỏa mãn.
Vậy nghiệm hệ phương trình $(x;y)=(-1;1)$
3) ta xét phương trình thứ nhất
\(x-\frac{1}{x}=y-\frac{1}{y}\)
<=>\(x-y-\frac{1}{x}+\frac{1}{y}=0\)
<=>\(x-y-\left(\frac{1}{x}-\frac{1}{y}\right)=0\)
<=>\(x-y-\left(\frac{y-x}{xy}\right)=0\)
<=>\(\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\)
<=>\(x=y\) hoặc xy=-1
Với x=y thay vào phương trình thứ hai ta có
\(2x=x^3+1
\)
<=> \(x^3-2x+1=0\)
<=>\(x^3-x^2+x^2-x-x+1=0\)
<=>\(\left(x-1\right)\left(x^2+x-1\right)=0\)
<=> \(x=1\) hoặc \(x^2+x-1=0\)
\(x^2+x-1=0\) <=> \(x=\frac{-1+\sqrt{5}}{2}\)
hoặc \(x=\frac{-1-\sqrt{5}}{2}\)
Đối với xy=-1 thì y=-1/x thay vào phương trình 2 giải bình thường
Từ 2 PT ta được:
\(\Leftrightarrow x^2-x^2y+y^2-y^2x=x-2xy+y\\ \Leftrightarrow\left(x+y\right)^2-xy\left(x+y\right)-\left(x+y\right)=0\\ \Leftrightarrow\left(x+y\right)\left(x+y-xy-1\right)=0\\ \Leftrightarrow\left(x+y\right)\left(1-y\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+y=0\\y=1\\x=1\end{matrix}\right.\)
Với \(x+y=0\Leftrightarrow x=-y\Leftrightarrow-y+2y^2+y=3\Leftrightarrow y^2=\dfrac{3}{2}\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{\sqrt{6}}{2}\Leftrightarrow x=-\dfrac{\sqrt{6}}{2}\\y=-\dfrac{\sqrt{6}}{2}\Leftrightarrow x=\dfrac{\sqrt{6}}{2}\end{matrix}\right.\)
Với \(y=1\Leftrightarrow x-2x+1=3\Leftrightarrow x=-2\)
Với \(x=1\Leftrightarrow1-2y+y=3\Leftrightarrow y=-2\)
Vậy \(\left(x;y\right)\in\left\{\left(-2;1\right);\left(1;-2\right);\left(\dfrac{\sqrt{6}}{2};-\dfrac{\sqrt{6}}{2}\right);\left(-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\right)\right\}\)
cam on bn