\(\hept{\begin{cases}x^2+4y^2+3=4x\\x^3+12x+8y^3=6x^2+9\end{cases}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

a) đặt \(\sqrt{x+6}=a\ge0\)

          \(\sqrt{x-2}=b\ge0\)

Ta có: \(\hept{\begin{cases}\left(a-b\right)\left(1+ab\right)=8\\a^2-b^2=8\end{cases}}\)

\(\Rightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)\left(ab-a-b+1\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)

Đến đây tự làm nhé

11 tháng 2 2018

Đề Câu a = mấy vậy?

14 tháng 5 2020

ko bít

14 tháng 5 2020

Hệ pt \(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2+y^2=1\\\left(x-2\right)^3+y^2=1\end{cases}}\)  Đặt a=x-2 hệ trở thành \(\hept{\begin{cases}a^2+y^2=1\\a^2+y^2=1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}-1\le a,y\le1\\a^2+y^2=a^3+y^3\end{cases}\Leftrightarrow\hept{\begin{cases}-1\le a;y\le1\left(1\right)\\a^2\left(1-a\right)+y^2\left(1-y\right)=0\left(2\right)\end{cases}}}\)

Từ (1) => (2) có \(VT\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow a^2\left(1-a\right)=y^2\left(1-y\right)=0\)

Kết hợp \(a^2+y^2=1\)ta có \(\hept{\begin{cases}a=0\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}a=1\\y=0\end{cases}}\)

Thay vào ta có nghiệm \(\hept{\begin{cases}x=2\\y=1\end{cases};\hept{\begin{cases}x=3\\y=0\end{cases}}}\)

cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~

7 tháng 1 2018

a.\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\2\cdot\frac{5}{8}+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)

7 tháng 1 2018

a) \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\\frac{5}{4}+4y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{5}{8};\frac{7}{16}\right)\)

b) \(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}8x-6y=2\\-3x+6y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5x=5\\-3x+6y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\-3+6y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)

30 tháng 12 2019

\(\hept{\begin{cases}x^2+y^2+3=4x\\x^3+12x+y^3=6x^2+9\end{cases}}\)

<=> \(\hept{\begin{cases}x^2-4x+4=1-y^2\\x^3-6x^2+12x-8=1-y^3\end{cases}}\)

<=> \(\hept{\begin{cases}\left(x-2\right)^2=1-y^2\\\left(x-2\right)^3=1-y^3\end{cases}}\)

Đặt x - 2 = u

ta có: \(\hept{\begin{cases}u^2+y^2=1\left(1\right)\\u^3+y^3=1\left(2\right)\end{cases}}\)

(1)(2) => \(0\le u,y\le1\)

=> \(u^2\left(1-u\right)+y^2\left(1-y\right)\ge0\)

Lấy (1) -(2) có: \(u^2\left(1-u\right)+y^2\left(1-y\right)=0\)

<=> u = 0; y =1 hoặc u = 1; y = 0

=> x ; y.

14 tháng 7 2016

\(\hept{\begin{cases}x^3-y^3-3y^2=9\left(1\right)\\x^2+y^2=x-4y\left(2\right)\end{cases}}\)

Lấy \(\left(1\right)-3.\left(2\right)\) ta có: \(\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Rightarrow x-1=y+2\)

\(\Rightarrow x=y+3\)

Khi đó, từ hệ phương trình \(\left(2\right)\) ta có:

\(\left(y+3\right)^2+y^2=y+3-4y\)

\(\Leftrightarrow2y^2+9y+6=0\)

\(\Leftrightarrow y=\frac{-9\pm\sqrt{33}}{4}\)

Vì \(x=y+3\)

nên \(x=\frac{-9\pm\sqrt{33}}{4}+3=\frac{3\pm\sqrt{33}}{4}\)

Vậy hệ phương trình có cặp nghiệm \(\left(x;y\right)=\left(\frac{3\pm\sqrt{33}}{4};\frac{-9\pm\sqrt{33}}{4}\right)\)

14 tháng 7 2016

ok bạn làm quá chuẩn