Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
a, Ta có : \(\left\{{}\begin{matrix}3x-y=5\\2x+3y=18\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3x-5\\2x+3\left(3x-5\right)=18\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3x-5\\2x+9x-15=18\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3x-5\\11x=33\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=3.3-5=4\\x=\frac{33}{11}=3\end{matrix}\right.\)
Vậy phương trình có nghiệm duy nhất là ( x;y ) = ( 3;4 )
b, Làm tương tự a
c, Ta có : \(\left\{{}\begin{matrix}\frac{14}{x-y+2}-\frac{10}{x+y-1}=9\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\frac{14}{x-y+2}-\frac{10}{x+y-1}=9\\\frac{15}{x-y+2}+\frac{10}{x+y-1}=20\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{29}{x-y+2}=29\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x-y+2=1\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=y-1\\\frac{3}{y-1-y+2}+\frac{2}{y-1+y-1}=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=y-1\\3+\frac{2}{2y-2}=4\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=y-1\\\frac{2}{2y-2}=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=y-1\\2y-2=2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=2-1=1\\y=2\end{matrix}\right.\)
Vậy phương trình có nghiệm duy nhất là ( x;y ) = ( 1;2 )
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
\(\left\{{}\begin{matrix}\frac{2y-5x}{3}+5=\frac{y+27}{4}-2x\\\frac{x+1}{3}+y=\frac{6y-5x}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{2y-5x}{3}+5+2x=\frac{y+27}{4}\\\frac{x+1}{3}+y=\frac{6y-5x}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{2y+x+15}{3}=\frac{y+27}{4}\\\frac{x+3y+1}{3}=\frac{6y-5x}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8y+4x+60=3y+81\\7x+21y+7=18y-15x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+5y=21\\22x+3y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+5y=21\\66x+9y=-21\end{matrix}\right.\Leftrightarrow70x+14y=0\Leftrightarrow5x+y=0\Leftrightarrow20x+4y=0;4x+5y=21\Leftrightarrow20x+25y=105\Leftrightarrow\left(20x+25y\right)-\left(20x+4y\right)=105\Leftrightarrow21y=105\Leftrightarrow y=5.\text{Thay vào ta được:}4x+25=21\Leftrightarrow4x=-4\Leftrightarrow x=-1\)
\(\text{Thử lại ta thấy thỏa mãn: Vậy: x=-1;y=5}\)
\(\left\{{}\begin{matrix}\frac{2}{3}y-\frac{5}{3}x-\frac{1}{4}y+2x=\frac{27}{4}-5\\\frac{1}{3}x+\frac{5}{7}x+y-\frac{6}{7}y=-\frac{1}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{3}x+\frac{5}{12}y=\frac{7}{4}\\\frac{22}{21}x+\frac{1}{7}y=-\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)
từ pt 1,,,,bạn rút x ra,,,,,
xét y=0=>...
xét y khác 0
ta thế x từ pt 1 vào x ở pt 2 rồi nhân vơi y lên,,,giải pt bậc 2. OK??
~ Tình yêu đẹp nhất khi còn là yêu thầm ~