K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

1.\(\left\{{}\begin{matrix}x^2+2xy-2x-y=0\\x^4-4\left(x+y-1\right)x^2+y^2+2xy=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+y\right)\left(x-1\right)=0\\x^4-4\left(x+y-1\right)x^2+y^2+2xy=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\1^4-4\left(1+y-1\right)1^2+y^2+2.1.y=0\end{matrix}\right.\)(1)

hoặc \(\Leftrightarrow\left\{{}\begin{matrix}y=-2x\\x^4-4\left(x-2x-1\right)x^2+\left(-2x\right)^2+2x.\left(-2x\right)=0\end{matrix}\right.\)(2)

(1)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\1-4y+y^2+2y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y^2-2y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

(2)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x\\x^4-4\left(-x-1\right)x^2+4x^2-4x^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x\\x^2\left(x^2+4x+4\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x\\x^2\left(x+2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=0\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}y=4\\x=-2\end{matrix}\right.\)

Vậy nghiệm của hệ pt là (1;1),(0;0),(-2;4)

2. \(x^4-x^3+1-y^2=0\)

\(\Leftrightarrow x^3\left(x-1\right)+\left(1-y\right)\left(1+y\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^3\left(x-1\right)=0\\\left(1-y\right)\left(1+y\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)(tm)hoặc\(\left\{{}\begin{matrix}x=1\\y=\pm1\end{matrix}\right.\)(tm)

Vậy nghiệm nguyên cuar pt là (0;1),(0;-1),(1;1),(1;-1)

AH
Akai Haruma
Giáo viên
22 tháng 1 2018

Câu 1:

\(\left\{\begin{matrix} x^2+2xy-2x-y=0(1)\\ x^4-4(x+y-1)x^2+y^2+2xy=0(2)\end{matrix}\right.\)

Bình phương (1)

\((x^2+2xy-2x-y)^2=0\)

\(\Leftrightarrow (x^2+2xy)^2+(2x+y)^2-2(x^2+2xy)(2x+y)=0(3)\)

Lấy \((3)-(2)\) thu được:

\(4x^3y+4x^2y^2-6x^2y-4xy^2+2xy=0\)

\(\Leftrightarrow 2xy[2x^2+2xy-3x-2y+1]=0\)

\(\Leftrightarrow 2xy[2x(x-1)+2y(x-1)-(x-1)]=0\)

\(\Leftrightarrow 2xy(2x+2y-1)(x-1)=0\)

Do đó xét các TH sau:

TH1: \(x=0\) thay vào (1) suy ra \(y=0\)

TH2: \(y=0\Rightarrow x^2-2x=0\Leftrightarrow x=0;2\)

TH3: \(x=1\). Thay vào (1) suy ra \(y=1\). Thử lại thấy đúng.

TH4: \(2x+2y-1=0\)

\((1)\Rightarrow (x+y-1)^2=y^2-y+1\)

\(\Leftrightarrow y^2-y+1=(\frac{1}{2}-1)^2=\frac{1}{4}\)

\(\Leftrightarrow y^2-y+\frac{3}{4}=0\)

\(\Leftrightarrow (y-\frac{1}{2})^2+\frac{1}{2}=0\) (vô lý)

Vậy \((x,y)=(0,0); (2,0); (1,1)\)

 

 

 

 

15 tháng 12 2021

Từ 2 PT ta được:

\(\Leftrightarrow x^2-x^2y+y^2-y^2x=x-2xy+y\\ \Leftrightarrow\left(x+y\right)^2-xy\left(x+y\right)-\left(x+y\right)=0\\ \Leftrightarrow\left(x+y\right)\left(x+y-xy-1\right)=0\\ \Leftrightarrow\left(x+y\right)\left(1-y\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+y=0\\y=1\\x=1\end{matrix}\right.\)

Với \(x+y=0\Leftrightarrow x=-y\Leftrightarrow-y+2y^2+y=3\Leftrightarrow y^2=\dfrac{3}{2}\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{\sqrt{6}}{2}\Leftrightarrow x=-\dfrac{\sqrt{6}}{2}\\y=-\dfrac{\sqrt{6}}{2}\Leftrightarrow x=\dfrac{\sqrt{6}}{2}\end{matrix}\right.\)

Với \(y=1\Leftrightarrow x-2x+1=3\Leftrightarrow x=-2\)

Với \(x=1\Leftrightarrow1-2y+y=3\Leftrightarrow y=-2\)

Vậy \(\left(x;y\right)\in\left\{\left(-2;1\right);\left(1;-2\right);\left(\dfrac{\sqrt{6}}{2};-\dfrac{\sqrt{6}}{2}\right);\left(-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\right)\right\}\)

15 tháng 12 2021

cam on bn

 

13 tháng 4 2017

\(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{2x+y+1}+2\sqrt[3]{7x+12y+8}=2xy+y+5\end{matrix}\right.\)

Xét \(pt\left(1\right)\) dễ dàng suy ra \(x+y\ge0\)

\(VT=\sqrt{\left(x-y\right)^2+\left(2x+y\right)^2}+\sqrt{\left(x-y\right)^2+\left(2y+x\right)^2}\)

\(\ge\left|2x+y\right|+\left|2y+x\right|\ge3\left(x+y\right)\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=y\\x,y\ge0\end{matrix}\right.\)

Thay vào \(pt\left(2\right)\) ta được:

\(\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5\)

\(\Leftrightarrow\left[\sqrt{3x+1}-\left(x+1\right)\right]+2\left[\sqrt[3]{19x+8}-\left(x+2\right)\right]=2x^2-2x\)

\(\Leftrightarrow\left(x-x^2\right)\left[\dfrac{1}{\sqrt{3x+1}+x+1}+2\cdot\dfrac{x+7}{\sqrt[3]{\left(19x+8\right)^2}+\left(x+2\right)\sqrt[3]{19x+8}+\left(x+2\right)^2}+2\right]=0\)

Do \(x;y\ge0\) nên pt trong ngoặc luôn dương

\(\Rightarrow x-x^2=0\Rightarrow x\left(1-x\right)=0\Rightarrow\)\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

\(x=y\)\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\) là nghiệm của hpt

14 tháng 4 2017

thanks b đã chỉ giúp mình.tại đánh máy nên mình ko để ý^^

5 tháng 1 2021

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ 

AH
Akai Haruma
Giáo viên
11 tháng 11 2021

Lời giải:
ĐKXĐ: $x\in\mathbb{R}$

Đặt $\sqrt{x^2+x+1}=a; \sqrt{x^2-x+1}=b(a,b\geq 0)$. PT trở thành:
$a=a^2-b^2+b$

$\Leftrightarrow (a-b)(a+b)-(a-b)=0$

$\Leftrightarrow (a-b)(a+b-1)=0$

$\Rightarrow a=b$ hoặc $a+b=1$

Nếu $a=b\Leftrightarrow a^2=b^2\Leftrightarrow x^2+x+1=x^2-x+1$

$\Leftrightarrow x=0$

Nếu $a+b=1$

$\Leftrightarrow \sqrt{x^2+x+1}+\sqrt{x^2-x+1}=1$

$\Leftrightarrow \sqrt{x^2+x+1}=1-\sqrt{x^2-x+1}$

$\Rightarrow x^2+x+1=x^2-x+2-2\sqrt{x^2-x+1}$

$\Leftrightarrow 1-2x=2\sqrt{x^2-x+1}$

$\Rightarrow (1-2x)^2=4(x^2-x+1)$

$\Leftrightarrow -3=0$ (vô lý)

Vậy pt có nghiệm $x=0$