Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}4x=52\\2x-y=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=13\\y=14\end{matrix}\right.\)
Thay m=2 vào HPT ta có:
\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiemj (x;y) = (3;-11)
Bài 1:
Đặt: \(\left\{{}\begin{matrix}u=\dfrac{1}{2x-2}\\v=\dfrac{1}{y-1}\end{matrix}\right.\) (ĐK: \(x,y\ne1\))
Hệ trở thành:
\(\Leftrightarrow\left\{{}\begin{matrix}u-v=2\\3u-2v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3u-3v=6\\3u-2v=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-v=5\\u-v=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=-5\\u=2+-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=-5\\u=-3\end{matrix}\right.\)
Trả lại ẩn của hệ pt:
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y-1}=-5\\\dfrac{1}{2x-2}=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-1=-\dfrac{1}{5}\\2x-2=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{5}\\x=\dfrac{5}{6}\end{matrix}\right.\left(tm\right)\)
\(\left\{{}\begin{matrix}2x+3y=1\\x-y=3\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x+3y=1\\3x-3y=9\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}5x=10\\x-y=3\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\2-y=3\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
y-x=12 <=> y = x+12
2x+y=126 <=> 2x + x + 12=126
<=> 3x+12=126
<=> x = 38
<=> y = 50
\(\left\{{}\begin{matrix}2x+y=126\\y-x=12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=114\\y-x=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=38\\y=50\end{matrix}\right.\)