K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

\(\Leftrightarrow\int^{xz+xy=44}_{yz+xz=23}\Rightarrow\int^{xy^2+\left(x^2-44\right)y-21x=0}_{\left(\sqrt{x^4-4x^2+1936+}+x^2+44\right)z-46x=0\Leftrightarrow\left(\sqrt{x^4-4x^2+1936}-x^2-44\right)z-46x=0}\)


\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(

loại )

\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}+x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(loại)

=>x,y,z vô nghiệm hoặc đề sai

2 tháng 3 2016

x=22

y=1

z=1

Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}x^2+xy+xz=48\left(1\right)\\4xy+4y^2+4yz=48\end{cases}}\)

\(\Rightarrow x^2+xy+xz-4xy-4y^2-4yz=0\)

\(\Leftrightarrow x^2-3xy-4y^2+xz-4yz=0\)

\(\Leftrightarrow\left(x-4y\right)\left(x+y+z\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4y\\x+y+z=0\end{cases}}\)

Với x+y+z=0

\(\left(1\right)\Leftrightarrow x\left(x+y+z\right)=48\Leftrightarrow0x=48\)(vô lí)

=> x=4y

Đến đây đơn giản rồi nhé

AH
Akai Haruma
Giáo viên
30 tháng 1 2017

Lời giải:

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{x}-\frac{1}{y}-\frac{1}{z}(1)\\ \frac{1}{b}=\frac{1}{y}-\frac{1}{z}-\frac{1}{x}(2)\\ \frac{1}{c}=\frac{1}{z}-\frac{1}{x}-\frac{1}{y}(3)\end{matrix}\right.\Rightarrow -\left [\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right]=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}(4)\)

Lấy \((1),(2),(3)+(4)\Rightarrow \left\{\begin{matrix} -\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{2}{x}\\ -\left(\frac{1}{a}+\frac{1}{c}\right)=\frac{2}{y}\\ -\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{2}{z}\end{matrix}\right.\rightarrow \left\{\begin{matrix} x=\frac{-2bc}{b+c}\\ y=\frac{-2ac}{a+c}\\ z=\frac{-2ab}{a+b}\end{matrix}\right.\)

Vậy nghiệm của HPT là \((x,y,z)=\left(\frac{-2bc}{b+c},\frac{-2ac}{a+c},\frac{-2ab}{a+b}\right)\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} x(x+y+z)=2\\ y(y+z+x)=3\\ z(z+x+y)=4\end{matrix}\right.(*)\).

Dễ thấy $x+y+z\neq 0$. Khi đó ta có:

\(\frac{x}{y}=\frac{x(x+y+z)}{y(y+z+x)}=\frac{2}{3}(1)\)

\(\frac{y}{z}=\frac{y(y+z+x)}{z(z+x+y)}=\frac{3}{4}(2)\)

Từ \((1);(2)\Rightarrow \frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) .

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k; y=3k; z=4k\)

Thay vào PT thứ nhất của $(*)$ suy ra:

\(2k(2k+3k+4k)=2\)

\(\Leftrightarrow 18k^2=2\Rightarrow k=\pm \frac{1}{3}\)

Nếu \(k=\frac{1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{2}{3}; 1; \frac{4}{3})\)

Nếu \(k=\frac{-1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{-2}{3}; -1; \frac{-4}{3})\)

25 tháng 5 2021

PT (1) \(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Nhận thấy VT\(\ge\)0 với mọi x,y,z

Dấu = xảy ra <=> x=y=z

Thay x=y=z vào pt (2) ta được:

\(3x^{2021}=3^{2022}\) \(\Leftrightarrow x^{2021}=3^{2021}\) \(\Leftrightarrow x=3\)

\(\Rightarrow x=y=z=3\)

Vậy (x;y;z)=(3;3;3)

1 tháng 9 2017

\(x^2+y^2+z^2=xy+yz+xz=1< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0< =>x=y=z=1....\\ .\)