Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\int^{xz+xy=44}_{yz+xz=23}\Rightarrow\int^{xy^2+\left(x^2-44\right)y-21x=0}_{\left(\sqrt{x^4-4x^2+1936+}+x^2+44\right)z-46x=0\Leftrightarrow\left(\sqrt{x^4-4x^2+1936}-x^2-44\right)z-46x=0}\)
\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(
loại )
\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}+x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(loại)
=>x,y,z vô nghiệm hoặc đề sai
Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}x^2+xy+xz=48\left(1\right)\\4xy+4y^2+4yz=48\end{cases}}\)
\(\Rightarrow x^2+xy+xz-4xy-4y^2-4yz=0\)
\(\Leftrightarrow x^2-3xy-4y^2+xz-4yz=0\)
\(\Leftrightarrow\left(x-4y\right)\left(x+y+z\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4y\\x+y+z=0\end{cases}}\)
Với x+y+z=0
\(\left(1\right)\Leftrightarrow x\left(x+y+z\right)=48\Leftrightarrow0x=48\)(vô lí)
=> x=4y
Đến đây đơn giản rồi nhé
Lời giải:
\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{x}-\frac{1}{y}-\frac{1}{z}(1)\\ \frac{1}{b}=\frac{1}{y}-\frac{1}{z}-\frac{1}{x}(2)\\ \frac{1}{c}=\frac{1}{z}-\frac{1}{x}-\frac{1}{y}(3)\end{matrix}\right.\Rightarrow -\left [\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right]=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}(4)\)
Lấy \((1),(2),(3)+(4)\Rightarrow \left\{\begin{matrix} -\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{2}{x}\\ -\left(\frac{1}{a}+\frac{1}{c}\right)=\frac{2}{y}\\ -\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{2}{z}\end{matrix}\right.\rightarrow \left\{\begin{matrix} x=\frac{-2bc}{b+c}\\ y=\frac{-2ac}{a+c}\\ z=\frac{-2ab}{a+b}\end{matrix}\right.\)
Vậy nghiệm của HPT là \((x,y,z)=\left(\frac{-2bc}{b+c},\frac{-2ac}{a+c},\frac{-2ab}{a+b}\right)\)
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} x(x+y+z)=2\\ y(y+z+x)=3\\ z(z+x+y)=4\end{matrix}\right.(*)\).
Dễ thấy $x+y+z\neq 0$. Khi đó ta có:
\(\frac{x}{y}=\frac{x(x+y+z)}{y(y+z+x)}=\frac{2}{3}(1)\)
\(\frac{y}{z}=\frac{y(y+z+x)}{z(z+x+y)}=\frac{3}{4}(2)\)
Từ \((1);(2)\Rightarrow \frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) .
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k; y=3k; z=4k\)
Thay vào PT thứ nhất của $(*)$ suy ra:
\(2k(2k+3k+4k)=2\)
\(\Leftrightarrow 18k^2=2\Rightarrow k=\pm \frac{1}{3}\)
Nếu \(k=\frac{1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{2}{3}; 1; \frac{4}{3})\)
Nếu \(k=\frac{-1}{3}\Rightarrow (x,y,z)=(2k,3k,4k)=(\frac{-2}{3}; -1; \frac{-4}{3})\)
cộng 1 vào mỗi pt sau đó phân tích đa thức thành nhân tử ở mỗi pt. rồi nhân các hạng tử vừa phân tích của 3 pt lại rồi bỏ mũ 2. Sau đó lấy pt đó chia cho mỗi phương trình trên cứ làm vậy là ra!!
Bạn có thể tham khảo cách của mình nha:
\(x+y+xy=19\Rightarrow\left(x+1\right)+y\left(x+1\right)=20\Rightarrow\left(x+1\right)\left(y+1\right)=20\) (1)
\(y+z+yz=11\Rightarrow\left(y+1\right)+z\left(y+1\right)=12\Rightarrow\left(y+1\right)\left(z+1\right)=12\) (2)
\(z+x+zx=14\Rightarrow\left(z+1\right)+x\left(z+1\right)=15\Rightarrow\left(z+1\right)\left(x+1\right)=15\) (3)
Nhân từng của (1),(2),(3), ta được:
\(\left[\left(x+1\right)\left(y+1\right)\left(x+1\right)\right]^2=20.12.15=3600\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\)60 hoặc -60
+)Nếu \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=60\)
Từ (1)\(\Rightarrow z+1=60:20=3\Rightarrow z=2\)
Từ (2)\(\Rightarrow x+1=60:12=5\Rightarrow x=4\)
Từ (3)\(\Rightarrow y+1=60:15=4\Rightarrow y=3\)
+)Nếu \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=-60\)
Từ (1)\(\Rightarrow z+1=-60:20=-3\Rightarrow z=-4\)
Từ (2)\(\Rightarrow x+1=-60:12=-5\Rightarrow x=-6\)
Từ (3)\(\Rightarrow y+1=-60:15=-4\Rightarrow y=-5\)
Vậy x=4,y=3,z=2 hoặc x=-6,y=-5,z=-4