\(\sqrt{x}\) +\(\sqrt{y}+\sqrt{z}=12\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 6 2019

ĐKXĐ:...

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=12\\\frac{\sqrt{x}}{5}+\frac{\sqrt{y}}{2}+\sqrt{z}=\frac{\sqrt{x}}{5}.\frac{\sqrt{y}}{2}.\sqrt{z}\end{matrix}\right.\)

Đặt \(\left(\frac{\sqrt{x}}{5};\frac{\sqrt{y}}{4};\frac{\sqrt{z}}{3}\right)=\left(a;b;c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}5a+4b+3c=12\\a+2b+3c=6abc\end{matrix}\right.\)

Từ pt đầu ta có:

\(12=5a+4b+3c\ge12\sqrt[12]{a^5.b^4.c^3}\Leftrightarrow a^5b^4c^3\le1\) (1)

Từ pt sau:

\(6abc=a+2b+3c\ge6\sqrt[6]{ab^2c^3}\Leftrightarrow abc\ge\sqrt[6]{ab^2c^3}\)

\(\Leftrightarrow a^6b^6c^6\ge ab^2c^3\Leftrightarrow a^5b^4c^3\ge1\) (2)

Từ (1) và (2) \(\Rightarrow a^5b^4c^3=1\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

\(\Rightarrow\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(5;4;3\right)\Rightarrow\left(x;y;z\right)=\left(25;16;9\right)\)

2 tháng 7 2017

a)\(A=\sqrt{2}-\sqrt{12-8\sqrt{2}}\)

\(A=\sqrt{2}-\sqrt{\left(2\sqrt{2}-2\right)^2}\)

\(A=\sqrt{2}-2\sqrt{2}+2\)

\(A=2-\sqrt{2}\)

c)\(C=\dfrac{2\sqrt{3-\sqrt{5}}}{\sqrt{10}-\sqrt{2}}=\dfrac{2\sqrt{3-\sqrt{5}}}{\sqrt{2}\left(\sqrt{5}-1\right)}=\dfrac{\sqrt{2}\sqrt{3-\sqrt{5}}}{\sqrt{5}-1}=\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}=\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{5}-1}=\dfrac{\sqrt{5}-1}{\sqrt{5}-1}=1\)

d)với x,y,x>0 xyz=100 =>\(\sqrt{xyz}=\sqrt{100}=10\)

\(D=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{10\sqrt{z}}{\sqrt{xz}+10\sqrt{z}+10}\)

\(D=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{xyz^2}}{\sqrt{xz}+\sqrt{xyz^2}+\sqrt{xyz}}\)

\(D=\dfrac{1}{\sqrt{y}+1+\sqrt{yz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{yz}}{1+\sqrt{yz}+\sqrt{y}}\)

\(D=\dfrac{1+\sqrt{y}+\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}=1\)

mình chỉ giải được câu a,c,d còn câu b mình nghĩ sai đề

4 tháng 2 2017

Xét phương trình đầu ta có:

\(\frac{3}{xyz}=x+y+z\ge3\sqrt[3]{xyz}\)

\(\Leftrightarrow xyz.\sqrt[3]{xyz}\le1\)

\(\Leftrightarrow xyz\le1\)(1)

Xét phương trình 2 ta có

\(\sqrt{x}+\sqrt{y}+\sqrt{z}=3\)

\(\Leftrightarrow x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=9\)

\(\Leftrightarrow\frac{3}{xyz}+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=9\)

\(\Leftrightarrow9=\frac{1}{xyz}+\frac{1}{xyz}+\frac{1}{xyz}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\ge9\sqrt[9]{\frac{1}{xyz}}\)

\(\Rightarrow1\ge\sqrt[9]{\frac{1}{xyz}}\)

\(\Leftrightarrow xyz\ge1\)(2)

Từ (1) và (2) suy ra xyz = 1

Dấu = xảy ra khi x = y = z = 1

4 tháng 2 2017

x=y=z=1 là nghiệm

8 tháng 7 2018

1.

Xét riêng 2 căn lớn đầu tiên

Bình phương, thu gọn được căn(12-8 căn 2)

Giờ kết hợp kết quả này với căn lớn còn lại

Tiếp tục bình phương, thu gọn là xong