\(\left(x^2+1\right)\left(y^2+1\right)+8xy=0\)

va 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2016

(*) Xét xy = 0 => x = 0 hoặc y = 0 

   (+) x =  0 thay vào pt (1) => y^2 + 1 = 0 ( vn) 

   (+) y = 0 ( TT )

(*) xét xy khác 0 

Chia cả hai vế pt (1) cho xy ta có :

\(\frac{\left(x^2+1\right)\left(y^2+1\right)}{xy}+8=0\Leftrightarrow\frac{x^2+1}{x}\cdot\frac{y^2+1}{y}+8=0\)

Đặt \(\frac{x}{x^2+1}=a;\frac{y}{y^2+1}=b\) ta có hpt 

\(\int^{\frac{1}{a}\cdot\frac{1}{b}+8=0}_{a+b=-\frac{1}{4}}\Leftrightarrow\int^{\frac{1}{ab}=-8}_{a+b=-\frac{1}{4}}\Leftrightarrow\int^{ab=-\frac{1}{8}}_{a+b=-\frac{1}{4}}\)

=>a ; b là nghiệm của pt \(X^2+\frac{1}{4}X-\frac{1}{8}=0\Leftrightarrow8X^2+2X-1=0\)

=> a ; b => tìm đc x ; y 

15 tháng 6 2015

Câu a, đặt x+1/y=a;y+1/x=b. đề bài tương đương vs việc giải pt:

             a+b=9/2   (1)

             ab=9/2      (2)

lấy (1) bình phương lên, khai triển ra ( tự làm ) rồi trừ đi 4 lần (2), ta được a^2-2ab+b^2=9/4

<=> (a-b)^2=9/4

<=> a-b= +- 3/4 (đã có tổng và đã có hiệu, giải như bài toán cấp 1 thui)

tìm đc a,b rùi thì tìm đc x và y dễ như bỡn!

Câu b, ( giải chi tiết hơn): 

     gọi 2 pt lần lượt là (1) và (2) nha

Nhận xét: nếu x=y thay vào (1) ta đc pt vô nghiệm => x khác y => x-y khác 0

Nhân (1) với (x-y), ta đc x^3-y^3=7(x-y)      (4)

Nhận xét: Nếu x^2=y^2 thay vào (2) ta đc pt vô nghiệm => x^2 khác y^2 => x^2-y^2 khác 0

Nhân (2) với (x^2-y^2), ta đc x^6-y^6=21(x^2-y^2)

<=> (x^3-y^3)(x^3+y^3)=21(x+y)(x-y)    (5)

thế (4) vào (5), ta rút gọn 2 bên  với 7(x-y), còn lại đc: (x+y)(x^2-xy+y^2)=3(x+y)

<=> x^2-xy+y^2=3  (6)

cộng (1) với (6) lại rùi chia mỗi vế đi 2, ta đc x^2+y^2=5

trừ (1) với (6), ta được xy=2

Từ 2 cái trên cộng rùi trừ vs nhau, viết thành hàng đẳng thức rùi khai căn ra luôn x và y, chúc bạn học tốt ^^

 

19 tháng 4 2019

\(\hept{\begin{cases}\frac{2x-3y}{2y-5}=\frac{3x+1}{3y-4}\left(1\right)\\2\left(x-3\right)-3\left(y+2\right)=-16\left(2\right)\end{cases}}\)

Nhân chéo và chuyển vế phương trình (1) và nhân phân phối, chuyển vế phương trình (2), ta được:

\(\hept{\begin{cases}7x-11y=-17\\2x-3y=-4\end{cases}}\)

<=>\(\hept{\begin{cases}x=7\\y=6\end{cases}}\)

1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\) 2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\) b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr:...
Đọc tiếp

1. a) Tìm \(n\in N\)*, \(n>2008\) sao cho \(2^{2008}+2^{2012}+2^{2013}+2^{2014}+2^{2016}+2^n\) là số chính phương

b) tìm x,y > 0 thỏa mãn \(x^2+y^2=2\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-2\right)\)

2. a) \(\left\{{}\begin{matrix}a\ge0\\a+b\ge1\end{matrix}\right.\). Min \(A=\frac{8a^2+b}{4a}+b^2\)

b) \(\left\{{}\begin{matrix}a,b\ge0\\\left(a-b\right)^2=a+b+2\end{matrix}\right.\). Cmr: \(\left(1+\frac{a^3}{\left(b+1\right)^3}\right)\left(1+\frac{b^3}{\left(b+1\right)^3}\right)\le9\)

c) \(x,y>0;\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2020\). Min P = x + y

d) \(x,y,z>0;\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=6\). Min \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

e) \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z+4xyz=4\end{matrix}\right.\) Cmr: \(\left(1+xy+\frac{y}{z}\right)\left(1+yz+\frac{z}{x}\right)\left(1+zx+\frac{x}{y}\right)\ge27\)

f) \(\left\{{}\begin{matrix}x,y,z\ge1\\3x^2+4y^2+5z^2=52\end{matrix}\right.\). Min P = x + y + z

g) \(x,y>0\). Min \(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^3+1}-1}+\frac{\left(2x+y\right)\left(x+2y\right)}{4}-\frac{8}{3\left(x+y\right)}\)

6
23 tháng 2 2020

?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương

giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!

NV
23 tháng 2 2020

Tranh thủ làm 1, 2 bài rồi ăn cơm:

1/ Đặt \(m=n-2008>0\)

\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương

\(\Rightarrow369+2^m\) là số chính phương

m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương

\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)

b/

\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)

\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)

\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)

\(\Rightarrow x=y=4\)

23 tháng 11 2015

sorry, em mới học lớp 6 thui ạ

23 tháng 11 2015

em mời hok lớp 7 thôi ạ

 

10 tháng 5 2017

2)

sử dụng phương pháp nhân liên hợp ở pt (1) ta được

\(\hept{\begin{cases}x+\sqrt{2012+x^2}=\sqrt{y^2+2012}-y\\y+\sqrt{y^2+2012}=\sqrt{x^2+2012}-x\end{cases}}\)

cộng 2 vế lại được x=-y

rồi sao?? mik đíu hiểu pt 2 lôi z ở đâu

11 tháng 5 2017

2,RA DUOC X=-Y ...THAY VAO PT 2 TA DC Y^2+Z^2 -4Y-4Z +4+4=0...(Y-2)^2 +(Z-2)^2=0...Y=Z=2 , X=-Y=-2