Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ pt (1) ta sẽ có
\(\left(x+1\right)^3-y^3+3\left(x+1-y\right)=0\)
\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2\right]+3\left(x+1-y\right)=0\)
\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right]=0\)
\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1+\frac{y}{2}\right)^2+\frac{3y^2}{4}+3\right]=0\)
\(\Leftrightarrow x+1=y\left(Do\left[...\right]>0\right)\)
Thay vô pt (2) ....
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)
Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm
pt đầu
<=> \(\left(x+1\right)^3-y^3+3\left(x+1\right)-3y=0\)
<=> \(\left(x+1-y\right)\left(\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right)=0\)
<=> \(x+1-y=0\)
vì \(\left(\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right)>0,\forall x;y\)
<=> y = x + 1
Thế vào phương trinhd dưới rồi giải
\(x^2+\left(x+1\right)^2-3x-1=0\)
<=> \(\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
Với x = 0 ta suy ra y = 1
Với x = 1/2 suy ra y = 3/2
Kết luận:...