\(\hept{\begin{cases}x^2+y^2=1\\x^2-x=y^2-y\end{cases}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

bài này mình thấy chỉ cần thế này là xong

\(x^2+y^2=1\Leftrightarrow x+y=\sqrt{1}=1\)( có đúng ko nhỉ )

=>\(x+y=0+1=1+0\)

\(=>\left\{x,y\right\}\in\left(0,1\right);\left(1,0\right)\)

29 tháng 3 2020

P/s : làm thử , e ms lớp 8 .

\(\hept{\begin{cases}x^2+y^2=1\\x^2-x=y^2-y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\x^2-y^2=x-y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\\left(x-y\right)\left(x+y\right)=x-y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\x+y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\left(1\right)\\x=1-y\left(2\right)\end{cases}}\)

Thay ( 2 ) vào ( 1 ) ta có :

\(\left(1-y\right)^2=1-y^2\)

\(\Leftrightarrow1-2y+y^2=1-y^2\)

\(\Leftrightarrow1+y^2-1+y^2=2y\)

\(\Leftrightarrow2y^2=2y\)

\(\Leftrightarrow2y^2-2y=0\)

\(\Leftrightarrow2y\left(y-1\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)

T/h 1 : y = 0 

=> x = 1 - 0 = 1

T/h 2 : y = 1

=> x = 1 - 1 = 0

Vậy ...................

17 tháng 2 2019

\(\hept{\begin{cases}y=2\sqrt{x-1}\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)  (ĐKXĐ: \(x\ge1;x\ge-y;\left(x;y\right)\in R\))

Thế (1) vào (2) ta được phương trình: \(\sqrt{x+2\sqrt{x-1}}=x^2-2\sqrt{x-1}\)

\(\sqrt{x-1+2\sqrt{x-1}+1}=x^2-2\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=x^2-2\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-1}+1=x^2-2\sqrt{x-1}\) (Do \(\sqrt{x-1}+1>0\))

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-3\sqrt{x-1}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}\left(x+1\right)-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\\sqrt{x-1}\left(x+1\right)=3\left(3\right)\end{cases}}\)

\(\left(3\right)\Leftrightarrow x^3+x^2-x-10=0\Leftrightarrow\left(x-2\right)\left(x^2+3x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2+3x+5=0\left(vn\right)\end{cases}\Leftrightarrow}x=2\). Từ (1) suy ra: \(y=2\)

Vậy hệ PT cho có nghiệm duy nhất (x;y)=(2;2)

17 tháng 2 2019

Bổ sung: Với x=1, từ (1) suy ra y=0 => (x;y)=(1;0)

Dùng cái đầu đi ạ

10 tháng 9 2020

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

23 tháng 10 2019

b) HPT \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=2xy\left(xy+1\right)\left(1\right)\\\left(x+y\right)\left(xy+1\right)=\left(2xy\right)^2\left(2\right)\end{cases}}\)

Công theo vế 2 pt trên cho nhau: \(\left(x+y\right)^2+\left(x+y\right)\left(xy+1\right)=2xy\left(xy+1\right)+\left(2xy\right)^2\)

\(\Leftrightarrow\left(x+y-2xy\right)\left(x+y+2xy\right)+\left(xy+1\right)\left(x+y-2xy\right)=0\)

\(\Leftrightarrow\left(x+y-2xy\right)\left(x+y+3xy+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y=2xy\\x+y+3xy+1=0\end{cases}}\)

* Với x + y = 2xy.

Thay vào (1) ta có: \(\left(2xy\right)^2=2xy\left(xy+1\right)\) 

\(\Leftrightarrow2xy\left(xy-1\right)=0\Rightarrow\orbr{\begin{cases}xy=0\\xy=1\end{cases}}\)

+) Với xy = 0 suy ra x +y = 0 => x =y = 0

+) Với xy = 1 => x +y = 2xy = 2

Theo hệ thức Viet đảo: x, y là hai nghiệm của hệ:

\(t^2-2t+1=0\Leftrightarrow t=1\Rightarrow x=y=1\)

* Với x +y + 3xy + 1 = 0.

\(\Rightarrow x+y=-\left(3xy+1\right)\)

Thay vào (1) ta thu được: \(\left(3xy+1\right)^2=2xy\left(xy+1\right)\)

\(\Leftrightarrow7x^2y^2+4xy+1=0\) . Ta có: \(7x^2y^2+4xy+1=7t^2+4t+1=7\left(t+\frac{2}{7}\right)^2+\frac{3}{7}>0\forall t=xy\)

Do đó với x +y + 3xy + 1 = 0 thì pt vô nghiệm.

=> (x;y) = {(0;0) , (1;1)}

P/s: Em mới học giải hệ thôi nên ko chắc về cách giải lẫn cách trình bày đâu nha!

23 tháng 10 2019

c) HPT \(\Leftrightarrow\hept{\begin{cases}\left(x^2+1\right)+y\left(x+y-2\right)=2y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{cases}}\)

Với y = 0 thay vào pt đầu suy ra \(x^2+1=0\) (vô nghiệm)

Xét y khác 0 khi đó HPT \(\Leftrightarrow\hept{\begin{cases}\frac{\left(x^2+1\right)}{y}+\left(x+y-2\right)=2\\\frac{\left(x^2+1\right)}{y}\left(x+y-2\right)=1\end{cases}}\)

Đặt \(\frac{x^2+1}{y}=a;x+y-2=b\)

Ta có: \(\hept{\begin{cases}a+b=2\\ab=1\end{cases}}\) theo hệ thức Viet đảo: a, b là hai nghiệm của pt \(t^2-2t+1=0\Rightarrow t=1\Rightarrow a=b=1\)

Do b = 1 suy ra \(x+y-2=1\Leftrightarrow x=3-y\).

Anh thử giải nốt xem sao?Em ko chắc đâu nhá!

11 tháng 9 2017

Ta có \(\hept{\begin{cases}\frac{x^2}{y}+x=2\left(1\right)\\\frac{y^2}{x}+y=\frac{1}{2}\left(2\right)\end{cases}}\)

Nhân từng vế (1) và (2), ta có\(x^2+2xy+y^2=1\)

\(\Leftrightarrow\left(x+y\right)^2=1\)

\(\Rightarrow\orbr{\begin{cases}x+y=1\\x+y=-1\end{cases}}\)

+Xét \(x+y=1\Leftrightarrow x=1-y\)

\(\left(1\right)\Rightarrow\frac{1^2-2y+y^2}{y}+\left(1-y\right)=2\)

\(\Leftrightarrow\frac{1}{y}-2+y+1-y=2\)

\(\Leftrightarrow\frac{1}{y}=3\)

\(\Leftrightarrow y=\frac{1}{3}\)

Thay\(y=\frac{1}{3}\)vào (2) ta được \(x=\frac{2}{3}\)( thỏa mãn)

+Xét \(x+y=-1\)

Tương tự ta có \(y=1;x=-2\)( thỏa mãn)

Vậy phương trình có nghiệm \(\left(y;x\right)=\left(\frac{1}{3};\frac{2}{3}\right);\left(1;-2\right)\)

31 tháng 3 2018

\(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)

ĐK \(x,y\ne0\)

   Từ     \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)

           \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)

+ thay  \(x=y\)vào (2) ta dc ..................

+xy=1 suy ra 1=1/y thay vao 2 ta dc............

20 tháng 2 2019

a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)

b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)

c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)

\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)

e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn

7 tháng 1 2019

câu 1 bạn có cho đề sai ko :

bạn có thể kham khảo bài ;

https://olm.vn/hoi-dap/detail/203671433762.html

4 tháng 9 2019

\(b,\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4\left(x+y\right)^2\left(x-y\right)-5\left(x-y\right)^2\left(x+y\right)=0\\40\left(x-y\right)+40\left(x+y\right)-9\left(x-y\right)\left(x+y\right)=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x^2-y^2\right)\left[4\left(x+y\right)-5\left(x-y\right)\right]=0\\80x-9\left(x^2-y^2\right)=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x+y\right)\left(x-y\right)\left(9y-x\right)=0\\9\left(\frac{80}{9}x-x^2+y^2\right)=0\end{cases}}\)

\(\Rightarrow.......\)

rồi sao típ ạ?