K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2016

mình giải khác @Aliba -@Aliba phân tích thành nhân tử. Mình làm bình thường nhân phân phối

\(\left(1\right)\Leftrightarrow x^2-\left(3y+2\right)x+2y^2+4y=0\)coi như hàm bậc 2 với x giải bình thường

\(\Delta\left(x\right)=\left(3y+2\right)^2-4\left(2y^2+4y\right)=\left(y-2\right)^2\) nhận phân phối ra giản ước là xong

\(\orbr{\begin{cases}x=\frac{3y+2-\left(y-2\right)}{2}=y+2\\x=\frac{3y+2+\left(y-2\right)}{2}=2y\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y=x-2\\y=\frac{x}{2}\end{cases}}\) thấy y theo x không dúng x thấy y vào (2)

\(\left(2\right)\Leftrightarrow\orbr{\begin{cases}\left(x^2-5\right)^2=2x-2\left(x-2\right)+5\\\left(x^2-5\right)=2x-2.\frac{x}{2}+5\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\left(x^2-5\right)^2=9\left(3\right)\\\left(x^2-5\right)^2=\left(x+5\right)\left(4\right)\end{cases}}\)

\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}x_{1,2}=+-\sqrt{2}\\x_{3,4}=+-2\sqrt{2}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}y_{1,2}=+-\sqrt{2}-2\\y_{3,4}=+-2\sqrt{2}-2\end{cases}}\)

\(\left(4\right)\Leftrightarrow x^4-10x^2-x+20=0\)\(\Leftrightarrow\left(x^2-ax+b\right)\left(x^2+ax+c\right)\)đồng nhất hệ số \(\hept{\begin{cases}a=1\\b=-5\\c=-4\end{cases}}\)

\(\left(4\right)\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)

\(\hept{\begin{cases}x^2-x-5=0\\x^2+x-4=0\end{cases}}\)\(\orbr{\begin{cases}\Delta=21\\\Delta=17\end{cases}}\)

\(\orbr{\begin{cases}x_{5,6}=\frac{1+-\sqrt{21}}{2}\\x_{7,8}=\frac{-1+-\sqrt{17}}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y_{5,6}=\frac{1+-\sqrt{21}}{4}\\y_{7,8}=\frac{-1+-\sqrt{17}}{4}\end{cases}}\)

6 tháng 12 2016

\(\hept{\begin{cases}x^2+2y^2-3xy-2x+4y=0\left(1\right)\\\left(x^2-5\right)^2=2x-2y+5\left(2\right)\end{cases}}\)

Xét \(\left(1\right)\Leftrightarrow\left(x^2-2xy\right)+\left(2y^2-xy\right)+\left(-2x+4y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x-y-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2y\\x=2+y\end{cases}}\)

Thế x = 2y vào (2) ta được

\(\left(4y^2-5\right)^2=4y-2y+5\)

\(\Leftrightarrow16y^4-40y^2-2y+20=0\)

\(\Leftrightarrow8y^4-20y^2-y+10=0\)

\(\Leftrightarrow\left(8y^4+4y^3-8y^2\right)+\left(-4y^3-2y^2+4y\right)+\left(-10y^2-5y+10\right)=0\)

\(\Leftrightarrow\left(2y^2+y-2\right)\left(4y^2-2y-5\right)=0\)

Tới đây thì đơn giản rồi. Cái còn lại làm tương tự

11 tháng 11 2016

Đề thi vào 10  tỉnh hưng yên năm 2013 thì phải

7 tháng 12 2016

từ pt(1) ta có được (x - 2y)(x - y - 2)=0
với  x=2y thì thay vào ta được ( 2y^2 + y - 2)(4y^2 - 2y - 5)=0
với x - y =2 thì ta có (x^2 - 5)^2 = 9
phần còn lại tự làm vậy
 

16 tháng 11 2016

\(\hept{\begin{cases}x^2+y^2=2\left(1\right)\\xy=1\left(2\right)\end{cases}}\)

Ta thấy x = 0, y = 0 không phải là nghiệm của hệ pt

Từ pt (2) => \(x=\frac{1}{y}\)thế vào pt (1) được

\(\frac{1}{y^2}+y^2=2\Leftrightarrow y^4-2y^2+1=0\)

\(\Leftrightarrow y^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Vậy nghiệm của hệ là (x, y) = (1, 1; - 1, - 1)

16 tháng 11 2016

Cách khác :Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\)  hệ thành:

\(\hept{\begin{cases}S^2-P=2\\P=1\end{cases}}\)\(\Leftrightarrow S^2=3\Leftrightarrow S=\sqrt{3}\)

Như vậy ta có hệ ban đầu là \(\hept{\begin{cases}x+y=\sqrt{3}\\xy=1\end{cases}}\)

r` tới đây thay vào 

12 tháng 4 2019

Xét phương trình đầu: \(x^2-\left(3y+2\right)x+2y^2+4y=0\)(1)

Xem x là ẩn và y là tham số:

\(\Delta=\left(3y+2\right)^2-4\left(2y^2+4y\right)=y^2-4y+4=\left(y-2\right)^2\)

Phương trình (1) có 2 nghiệm 

\(x_1=\frac{\left(3y+2\right)-\left(y-2\right)}{2}=y+2\)

\(x_2=\frac{3y+2+\left(y-2\right)}{2}=2y\)

+) Với x =y+2 <=> y=x-2Thế vào phương trình (2) Ta có:

\(\left(x^2-5\right)^2=9\Leftrightarrow\orbr{\begin{cases}x^2-5=-3\\x^2-5=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=2\\x^2=8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\pm\sqrt{2}\\x=\pm2\sqrt{2}\end{cases}}\)

thế vào tìm y

+) Với x=2y thế vào ta có: \(\left(x^2-5\right)^2=x+5\Leftrightarrow x^4-10x^2-x+20=0\)

\(\Leftrightarrow\left(x^4-9x^2+\frac{81}{4}\right)-\left(x^2+x+\frac{1}{4}\right)=0\Leftrightarrow\left(x^2-\frac{9}{4}\right)^2-\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x^2-x-5\right)\left(x^2+x-4\right)=0\)

Em làm tiếp nhé

31 tháng 12 2017

2)trừ từng vế của 2 pt, ta có 

\(x^2y+y^2x-4x-4y-x^2+3xy+4y^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+4\right)\left(y-1\right)=0\) (cái này bạn tự phân tích nhá )

đến đây thì dễ rồi 

^_^

9 tháng 5 2020

\(\hept{\begin{cases}2x^2+3xy-2y^2-5\left(2x-y\right)=0\left(1\right)\\x^2-2xy-3y^2+15=0\left(2\right)\end{cases}\left(I\right)}\)

Ta có \(\left(1\right)\Leftrightarrow\left(2x-y\right)\left(x+2y\right)-5\left(2x-y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=2x\\x=5-2y\end{cases}}\)

Do đó \(\left(I\right)\Leftrightarrow\hept{\begin{cases}y=2x\\x^2-2x\cdot2x-3\left(2x\right)^2+15=0\end{cases}\left(II\right)}\)hoặc \(\hept{\begin{cases}x=5-2y\\\left(5-2y\right)^2-2\left(5-2y\right)y-3y^2+15=0\end{cases}\left(III\right)}\)

\(\left(II\right)\Leftrightarrow\hept{\begin{cases}y=2x\\-15x^2+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1;y=2\\x=-1;y=-2\end{cases}}}\)

\(\left(III\right)\Leftrightarrow\hept{\begin{cases}x=5-2y\\5y^2-30y+40=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2;x=1\\y=4;x=-3\end{cases}}}\)

Vậy hệ phương trình (I) đã cho có nghiệm (x;y)=(1;2);(-1;-2);(-3;4)