\(\hept{\begin{cases}\frac{1}{x+1}+\frac{3}{y+2}=8\\5xy+6x+8y+12=0\en...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\hept{\begin{cases}\frac{1}{x+1}+\frac{3}{y+2}=8\\5xy+6x+8y+21=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{y+2+3x+3}{xy+2x+y+2}=8\\5xy+6x+8y+21=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+y+5=8xy+16x+8y+16\\5xy+6x+8y+21=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8xy+13x+7x+11=0\\5xy+6x+8y+21=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3xy+7x-y-10=0\\5xy-6x+8y+21=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2xy-13x+9y+31=0\\3xy+7x-y-10=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2xy-13x+9y+31=0\\xy-6x-10y-41=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy-7x+19y+72=0\\xy-6x-10y-41=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-29y-113=0\\xy-6x-10y-41=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=113+29y\\\left(113+29y\right)y-6\left(113+29y\right)-10y-41=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=113+29y\\29y^2+113y-678-174y-10y-41=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=113+29y\\29y^2-71y-719=0\end{cases}}\)

đến đay tự làm nha

21 tháng 1 2021

Sorry mn ạ, câu này phải là 12 ko phải là 21 ạ

https://olm.vn/hoi-dap/detail/333027925292.html

Mn giúp e vs ạ, link câu hỏi sửa lại

23 tháng 5 2017

1.

x + \(\sqrt{1-x^2}\) = 1

ĐK: -1 <= x <= 1

<=> \(\sqrt{1-x^2}\)= 1 - x

Vì 1 - x >= 0 nên ta có thể bình phương 2 vế

<=> 1 - x2 = (1 - x)2

<=> 1 - x2 = 1 - 2x + x2

<=> 2x2 - 2x = 0

<=> 

x = 0

x = 1

23 tháng 5 2017

2.

Hệ tương đương

\(\hept{\begin{cases}6\left(x+y\right)=5xy\\\frac{4y-3x}{xy}=1\end{cases}}\)

<=>

\(\hept{\begin{cases}6\left(x+y\right)=5xy\\4y-3x=xy\end{cases}}\)

<=>

\(\hept{\begin{cases}6\left(x+y\right)=5\left(4y-3x\right)\\4y-3x=xy\end{cases}}\)

<=>

\(\hept{\begin{cases}14y-21x=0\\4y-3x=xy\end{cases}}\)

<=>

\(\hept{\begin{cases}14y-21x=0\\y=\frac{3x}{4-x}\end{cases}}\)

Thay y = \(\frac{3x}{4-x}\)Vào PT trên

=> \(\frac{42x}{4-x}\)= 21x

<=> 42x = 21x(4 - x)

<=> 2x = x(4 - x)

<=> x2 - 2x = 0

x = 0 (Loại vi x khác 0)

x = 2, => y = 3

Vậy, Nghiêm của hệ PT:

x = 2

y = 3

20 tháng 2 2019

a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)

b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)

c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)

\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)

e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn

4 tháng 9 2019

\(b,\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4\left(x+y\right)^2\left(x-y\right)-5\left(x-y\right)^2\left(x+y\right)=0\\40\left(x-y\right)+40\left(x+y\right)-9\left(x-y\right)\left(x+y\right)=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x^2-y^2\right)\left[4\left(x+y\right)-5\left(x-y\right)\right]=0\\80x-9\left(x^2-y^2\right)=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x+y\right)\left(x-y\right)\left(9y-x\right)=0\\9\left(\frac{80}{9}x-x^2+y^2\right)=0\end{cases}}\)

\(\Rightarrow.......\)

rồi sao típ ạ?

ĐK \(\hept{\begin{cases}x\ne0\\x+y\ne0\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{1}{x}=a\\x+y=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}8a^2+b=\frac{3}{2a}\\b^2+a=\frac{3}{2b}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}16a^3+2ab=3\\2b^3+2ab=3\end{cases}}\)

\(\Rightarrow16a^3=2b^3\Rightarrow8a^3=b^3\)

\(\Rightarrow2a=b\)

\(\Rightarrow\frac{2}{x}=x+y\Leftrightarrow x^2+xy-2=0\)

Rút y thay vào hệ là ra

15 tháng 11 2018

a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

15 tháng 11 2018

b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.

Xét \(x>y>z\)

\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)

\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)

\(\Rightarrow x=y=z\)'

\(\Rightarrow x+\frac{1}{x}=2\)

\(\Leftrightarrow x=1\)

14 tháng 11 2019

ĐK: \(x,y\ne-1\)

hpt \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{x^2}{y^2+2y+1}+\frac{y^2}{x^2+2x+1}=\frac{8}{9}\\\frac{4x+4y-5xy+4}{xy+x+y+1}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{8}{9}\\4-\frac{9xy}{\left(x+1\right)\left(y+1\right)}\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a^2+b^2=\frac{8}{9}\\ab=\frac{4}{9}\end{cases}}\)\(\left(a;b\right)=\left(\frac{x}{y+1};\frac{y}{x+1}\right)\)

7 tháng 7 2017

c. \(\hept{\begin{cases}xy-\frac{x}{y}=9,6\left(1\right)\\xy-\frac{y}{x}=7,5\left(2\right)\end{cases}}\)

Lấy (1)-(2) ta có \(\frac{y}{x}-\frac{x}{y}=\frac{21}{10}\)\(\Rightarrow\)\(\frac{y^2-x^2}{xy}=\frac{21}{10}\Rightarrow10y^2-21xy-10x^2=0\Rightarrow\left(5y+2x\right)\left(2y-5x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5y+2x=0\\2y-5x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{2}y\\x=\frac{2}{5}y\end{cases}}}\)

Với \(x=-\frac{5}{2}y\Rightarrow\left(-\frac{5}{2}y\right)y-\frac{-\frac{5}{2}y}{y}=9,6\Rightarrow-\frac{5}{2}y^2=\frac{71}{10}\Rightarrow y^2=-\frac{71}{25}\left(l\right)\)

Với \(x=\frac{2}{5}y\Rightarrow\frac{2}{5}y.y-\frac{\frac{2}{5}y}{y}=9,6\Rightarrow\frac{2}{5}y^2=10\Rightarrow y^2=25\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)

Vậy \(\left(x,y\right)=\left(2,5\right);\left(-2,-5\right)\)

7 tháng 7 2017

Sao ý b) xấu thế :v