Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=\lim\limits_{x\rightarrow\sqrt{2}}\frac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=\lim\limits_{x\rightarrow\sqrt{2}}\left(x+\sqrt{2}\right)=2\sqrt{2}\)
\(\Rightarrow\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=f\left(\sqrt{2}\right)\Rightarrow\) hàm số liên tục tại \(x=\sqrt{2}\)
b/ \(\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^+}\frac{x-5}{\sqrt{2x-1}-3}=\frac{\left(x-5\right)\left(\sqrt{2x-1}+3\right)}{2\left(x-5\right)}=\lim\limits_{x\rightarrow5^+}\frac{\sqrt{2x-1}+3}{2}=3\)
\(f\left(5\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=\lim\limits_{x\rightarrow5^-}\left[\left(x-5\right)^2+3\right]=5\)
\(\Rightarrow\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=f\left(5\right)\Rightarrow\) hàm số liên tục tại \(x=5\)
ĐKXĐ: ...
Phương trình đầu tương đương:
\(2y^3+y=2\sqrt{1-x}-2x+\sqrt{1-x}\)
\(\Leftrightarrow2y^3+y=2\left(1-x\right)\sqrt{1-x}+\sqrt{1-x}\)
Đặt \(\sqrt{1-x}=a\ge0\)
\(\Rightarrow2y^3+y=2a^3+a\)
Hàm \(f\left(t\right)=2t^3+t\) có \(f'\left(t\right)=6t^2+1>0\) ;\(\forall t\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow y=a\Leftrightarrow y=\sqrt{1-x}\Rightarrow y^2=1-x\) (với \(y\ge0\))
Thế xuống pt dưới:
\(\sqrt{4x+5}=2x^2-6x-1\)
Đặt \(\sqrt{4x+5}=2t-3\Rightarrow\left\{{}\begin{matrix}2t-3=2x^2-6x-1\\4x+5=4t^2-12t+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t=x^2-3x+1\\x=t^2-3t+1\end{matrix}\right.\)
Hệ đối xứng, chắc tới đây bạn giải quyết được phần còn lại