K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2019

1,\(x^2-2y^2-xy=0\)

<=> \(\left(x-2y\right)\left(x+y\right)=0\)

<=> \(\orbr{\begin{cases}x=2y\\x=-y\end{cases}}\)

Sau đó bạn thế vào PT dưới rồi tính 

27 tháng 6 2019

3.  ĐKXĐ  \(x\le1\)\(x+2y+3\ge0\)

.\(2y^3-\left(x+4\right)y^2+8y+x^2-4x=0\)

<=> \(\left(2y^3-xy^2\right)+\left(x^2-4y^2\right)-\left(4x-8y\right)=0\)

<=> \(\left(x-2y\right)\left(-y^2+x+2y-4\right)=0\)

Mà \(-y^2+2y-4=-\left(y-1\right)^2-3\le-3\)\(x\le1\)nên \(-y^2+x+2y-4< 0\)

=> \(x=2y\)

Thế vào Pt còn lại ta được

\(\sqrt{\frac{1-x}{2}}+\sqrt{2x+3}=\sqrt{5}\)ĐK \(-\frac{3}{2}\le x\le1\)

<=> \(\frac{1-x}{2}+2x+3+2\sqrt{\frac{\left(1-x\right)\left(2x+3\right)}{2}}=5\)

<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}x+\frac{3}{2}\)

<=> \(\sqrt{2\left(1-x\right)\left(2x+3\right)}=-\frac{3}{2}\left(x-1\right)\)

<=> \(\orbr{\begin{cases}x=1\\\sqrt{2\left(2x+3\right)}=\frac{3}{2}\sqrt{1-x}\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=-\frac{3}{5}\end{cases}}\)(TMĐK )

Vậy \(\left(x;y\right)=\left(1;\frac{1}{2}\right),\left(-\frac{3}{5};-\frac{3}{10}\right)\)

5 tháng 8 2019

Hệ phương trình trở thành:

\(\hept{\begin{cases}\left(x+y\right)\left(x^2+y^2\right)=5\left(1\right)\\\left(x+y\right)\left(x-y\right)^2=3\left(2\right)\end{cases}}\)

Ta có: x+y  khác 0; x-y khác 0

+) Với x =0  thay vào ta có hệ phương trình mới: \(\hept{\begin{cases}y.y^2=5\\y.y^2=3\end{cases}}\) loại

+) Với x khác 0, Đặt y=xt

Chia vế theo vế (1) cho (2), Ta có:

 \(\frac{x^2+y^2}{\left(x-y\right)^2}=\frac{5}{3}\Leftrightarrow\frac{x^2+x^2t^2}{\left(x-xt\right)^2}=\frac{5}{3}\)

\(\Leftrightarrow\frac{1+t^2}{\left(1-t\right)^2}=\frac{5}{3}\)

\(\Leftrightarrow3\left(1+t^2\right)=5\left(1-t\right)^2\)

\(\Leftrightarrow2t^2-10t+2=0\Leftrightarrow\orbr{\begin{cases}t=\frac{5+\sqrt{21}}{2}\\t=\frac{5-\sqrt{21}}{2}\end{cases}}\)

Ta có: y=xt thế vào phương trình (1) hoặc (2) ta có phương trình ẩn x. Gợi ý như vậy em làm tiếp nhé! :)