Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\frac{x}{x+1}\) , \(b=\frac{1}{y+4}\) thì hệ trở thành
\(\hept{\begin{cases}3a-2b=4\\2a-5b=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{2}{11}\\b=-\frac{19}{11}\end{cases}}\)
Tới đây dễ rồi :)
b) đk: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
pt (1) \(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\left(L\right),x=2\left(T\right)\)\(,x^2-2x+4=0\left(3\right)\)
pt(3) VÔ NGHIỆM vì \(\Delta'=1-4=-3< 0\)
Thay x=2 vào pt (2) ta được: \(\frac{1}{2}+\frac{1}{y-1}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow x=2\left(tm\right)\)
Vậy nghiệm của hệ pt là(x;y)=(2;2)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
1/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{12}{x}+\frac{3}{y-2}=3\end{matrix}\right.\) \(\Rightarrow\frac{10}{x}=-1\Rightarrow x=-10\)
\(\frac{4}{-10}+\frac{1}{y-2}=1\Rightarrow\frac{1}{y-2}=\frac{7}{5}\Rightarrow y-2=\frac{5}{7}\Rightarrow y=\frac{19}{7}\)
2/ ĐKXĐ:...
Đặt \(\left\{{}\begin{matrix}\frac{1}{2x-y}=a\\\frac{1}{x+y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a-b=0\\3a-6b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{9}\\b=\frac{2}{9}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{9}\\\frac{1}{x+y}=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=9\\x+y=\frac{9}{2}\end{matrix}\right.\) \(\Rightarrow...\)
3/ \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-6y-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+6y=-19\end{matrix}\right.\) \(\Rightarrow...\)
4/ Bạn tự giải
\(\left\{{}\begin{matrix}\frac{3x}{x+1}+\frac{2}{y+4}=4\\\frac{2x}{x+1}-\frac{5}{y+4}=9\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\frac{x}{x+1}\\b=\frac{1}{y+4}\end{matrix}\right.\)
Thay a và b vào hệ phương trình ta có:
\(\left\{{}\begin{matrix}3a+2b=4\\2a-5b=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6a+4b=8\\6a-15b=27\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19b=-19\\3a+2b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-1\\3a+2.\left(-1\right)=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-1\\a=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Ta có:
\(a=\frac{x}{x+1}=2\Leftrightarrow x=2\left(x+1\right)\)
<=> x=2x+2
<=> x=-2
\(b=\frac{1}{y+4}=-1\Leftrightarrow y+4=-1\Leftrightarrow y=-5\)
Vậy hệ phương trình có nghiệm \(\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)
x=-2
y=-5