
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


gdgsbcn3wvevitoierha5 4mfs,cuq8w3[0 nef g4u vycy091nkvu rnf yn24gtc3gwy 5te7s8xy344h3f-n
Mới nghĩ ra cách mới toanh nhưng ko biết đúng ko.
\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-8x-y^2-2y=0\\x^2-3-3y^2-3=0\end{cases}}}\)
Vì 2 phương trình trên đều ''='' 0 Suy ra : \(x^3-8x-y^2-2y=x^2-3-3y^2-3\)
Mà \(x^3-8x-y^2-2y-x^2+3+3y^2+3=0\)
\(\Leftrightarrow\left(x^3-8x-x^2+3\right)\left(-y^2-2y+3y^2+3\right)=0\)
Ta lại có : \(\orbr{\begin{cases}x^3-8x-x^2+3=0\\2y^2-2y+3=0\end{cases}}\)=> Vô nghiệm

\(hpt\Leftrightarrow\hept{\begin{cases}6(x^3-y^3)=6(8x+2y)\\x^2-3y^2=6\end{cases}}\)
Suy ra \(6(x^3-y^3)=(8x+2y)(x^2-3y^2)\)
\(\Leftrightarrow x(x-3y)(x+4y)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=3y;x=-4y\end{cases}}\)
Thay vào giải tiếp nhé !!

\(\hept{\begin{cases}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{cases}}\)
Dễ thấy y = 0 không phải là nghiệm của hệ.
Xét \(y\ne0\)
\(\Rightarrow\hept{\begin{cases}8x^3y^3+27=18y^3\left(1\right)\\4x^2y^2+6xy=y^3\left(2\right)\end{cases}}\)
Lấy (1) - 18.(2) ta được
\(8x^3y^3-72x^2y^2-108xy+27=0\)
\(\Leftrightarrow\left(2xy+3\right)\left(4x^2y^2-42xy+9\right)=0\)
Đặt \(xy=a\)
\(\Rightarrow\left(2a+3\right)\left(4a^2-42a+9\right)=0\)
Tới đây thì bạn làm tiếp nhé.

Lời giải:
Trừ theo vế 2 pt trên ta có:
$x^3-y^3=5y-5x$
$\Leftrightarrow (x-y)(x^2+xy+y^2)+5(x-y)=0$
$\Leftrightarrow (x-y)(x^2+xy+y^2+5)=0$
Ta thấy: $x^2+xy+y^2+5=(x+\frac{y}{2})^2+\frac{3y^2}{4}+5\geq 5>0$ với mọi $x,y$
$\Rightarrow x-y=0$
$\Leftrightarrow x=y$.
Thay vào pt (1): $x^3=3x+8x=11x$
$\Leftrightarrow x(x^2-11)=0$
$\Leftrightarrow x\in\left\{0; \pm \sqrt{11}\right\}$
Vậy........

Có: \(\left(x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}\right)^2\ge\left(x^2+12-x^2\right)\left(12-y+y\right)=12^2\)(Bunhiacopxki)
\(\Rightarrow x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}\ge12\)
Dấu "=" xảy ra <=> \(\frac{x}{\sqrt{12-y}}=\frac{\sqrt{12-x^2}}{\sqrt{y}}\)\(\Leftrightarrow\frac{x^2}{12-y}=\frac{12-x^2}{y}=\frac{x^2+12-x^2}{12-y+y}=1\)
\(\Rightarrow x^2=12-y\Rightarrow y=12-x^2\)
Có :\(x^3-8x-1=2\sqrt{12-x^2-2}=2\sqrt{10-x^2}\)
+) Nếu x ≤-1 thì (2x^3)>y^3>(2x-1)^3 (loại)
+) Nếu x ≥1 thì (2x^3)<y^3<(2x+1)^3 (loại)
+) Nếu x = 0 thì y =0 thỏa mãn