\(x+y+z=9\)

\(\frac{1}{x}+\fra...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

Áp dụng bất đẳng thức Caushy-schwarz, ta có :

\(\frac{1}{x}+\frac{1}{z}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+1}=\frac{9}{9}=1\)

Dấu "=" xảy ra khi x=y=z = 3

Thử lại ta thấy thỏa mãn ycbt :

Vậy ....

NV
27 tháng 6 2020

\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(zx\right)^2}{xy^2z\left(z+x\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)

\(VT=\frac{2\left(yz\right)^2}{xy+xz}+\frac{2\left(zx\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\)

\(VT\ge\frac{2\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)

23 tháng 8 2020

đặt \(\left(a;b;c\right)=\left(\sqrt{\frac{yz}{x}};\sqrt{\frac{zx}{y}};\sqrt{\frac{xy}{z}}\right)\)\(\Rightarrow\)\(a^2+b^2+c^2=1\)

\(A=\Sigma\frac{1}{1-ab}=\Sigma\frac{2ab}{2\left(a^2+b^2+c^2\right)-2ab}+3\le\frac{1}{2}\Sigma\frac{\left(a+b\right)^2}{b^2+c^2+c^2+a^2}\)

\(\le\frac{1}{2}\Sigma\left(\frac{a^2}{c^2+a^2}+\frac{b^2}{b^2+c^2}\right)=\frac{9}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} \frac{xy+yz+xz}{y+z}=\frac{1}{2}\\ \frac{xy+yz+xz}{z+x}=\frac{1}{3}\\ \frac{xy+yz+xz}{x+y}=\frac{1}{4}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x+z}{y+z}=\frac{3}{2}\\ \frac{x+y}{x+z}=\frac{4}{3}\\ \frac{y+z}{x+y}=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2x-3y-z=0\\ -x+3y-4z=0\\ -x+y+2z=0\end{matrix}\right.\Rightarrow 3x=5y=15z\)

Thay vào phương trình ban đầu: \(5z+\frac{3z.z}{3z+z}=\frac{1}{2}\Leftrightarrow z=\frac{2}{23}\Rightarrow x=\frac{10}{23},y=\frac{6}{23}\)

Thử lại thấy đúng

Vậy nghiệm của HPT là \((x,y,z)=(\frac{10}{23},\frac{6}{23},\frac{2}{23})\)

1 tháng 4 2019

\(\frac{27}{3\sqrt{3x-2}+6}+\frac{8+4x-x^2}{x\sqrt{6-x}+4}\ge\frac{3}{2}+\frac{2x-14}{3\sqrt{6-x}+2}>0\)

Nên phần còn lại vô nghiệm

NV
7 tháng 10 2020

Do \(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)

\(\Rightarrow xy+yz+zx-2xyz=xy\left(1-z\right)+yz\left(1-x\right)+zx\ge0\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị

Mặt khác do vai trò của x;y;z là hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(x=min\left\{x;y;z\right\}\Rightarrow1=x+y+z\ge3x\Rightarrow0\le x\le\frac{1}{3}\)

\(P=x\left(y+z\right)+yz\left(1-2x\right)=x\left(1-x\right)+yz\left(1-2x\right)\)

\(P\le x\left(1-x\right)+\frac{1}{4}\left(y+z\right)^2\left(1-2x\right)=x\left(1-x\right)+\frac{1}{4}\left(1-x\right)^2\left(1-2x\right)\)

\(P\le\frac{-2x^3+x^2+1}{4}=\frac{-2x^3+x^2+1}{4}-\frac{7}{27}+\frac{7}{27}\)

\(P\le-\frac{\left(1-3x\right)^2\left(6x+1\right)}{108}+\frac{7}{27}\le\frac{7}{27}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3
NV
26 tháng 2 2020

\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\frac{xy}{\left(x+z\right)\left(y+z\right)}}\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{y+z}\right)\)

Tương tự: \(\sqrt{\frac{yz}{yz+x}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{x+z}\right)\) ; \(\sqrt{\frac{zx}{zx+y}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{z}{y+z}\right)\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)