Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 30 phút = 0,5 giờ
Quãng sông từ A đến B dài là:
\(x\) \(\times\) 0,5 + y \(\times\) 1 = 0,5\(x\) + y (km)
Kết luận Quãng đường từ A đên B dài: 0,5\(x\) + y (km)
Lời giải:
Áp dụng tính chất tổng 3 góc trong 1 tam giác bằng $180^0$
Hình 1: Hình không rõ ràng. Bạn xem lại.
Hình 2: $x+x+120^0=180^0$
$2x+120^0=180^0$
$2x=60^0$
$x=60^0:2=30^0$
Hình 3:
$2y+y+90^0=180^0$
$3y=180^0-90^0=90^0$
$y=90^0:3=30^0$
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
a: \(\left|5-\dfrac{2}{3}x\right|>=0\forall x;\left|\dfrac{2}{3}y-4\right|>=0\forall y\)
Do đó: \(\left|5-\dfrac{2}{3}x\right|+\left|\dfrac{2}{3}y-4\right|>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}5-\dfrac{2}{3}x=0\\\dfrac{2}{3}y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5:\dfrac{2}{3}=\dfrac{15}{2}\\y=4:\dfrac{2}{3}=6\end{matrix}\right.\)
b: \(\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|>=0\forall x;\left|1,5-\dfrac{3}{4}-\dfrac{3}{2}y\right|>=0\forall y\)
Do đó: \(\left\{{}\begin{matrix}\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x=0\\1,5-\dfrac{3}{4}-\dfrac{3}{2}y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{4}x=-\dfrac{2}{3}+\dfrac{1}{2}=-\dfrac{1}{6}\\\dfrac{3}{2}y=1,5-\dfrac{3}{4}=\dfrac{3}{2}-\dfrac{3}{4}=\dfrac{3}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{6}:\dfrac{3}{4}=-\dfrac{1}{6}\cdot\dfrac{4}{3}=\dfrac{-4}{18}=-\dfrac{2}{9}\\y=\dfrac{1}{2}\end{matrix}\right.\)
c: \(\left|x-2020\right|>=0\forall x;\left|y-2021\right|>=0\forall y\)
Do đó: \(\left|x-2020\right|+\left|y-2021\right|>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2020=0\\y-2021=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2020\\y=2021\end{matrix}\right.\)
d: \(\left|x-y\right|>=0\forall x,y\)
\(\left|y+\dfrac{21}{10}\right|>=0\forall y\)
Do đó: \(\left|x-y\right|+\left|y+\dfrac{21}{10}\right|>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{21}{10}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{21}{10}\)