Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\left\{{}\begin{matrix}1,7x-2y=3,8\\2,1x+5y=0,4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17x-20y=38\\21x+50y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}85x-100y=190\\42x+100y=8\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}127x=198\\21x+50y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\frac{198}{127}\\21.\frac{198}{127}+50y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\frac{198}{127}\\50y=4-\frac{4158}{127}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\frac{198}{127}\\50y=-\frac{3650}{127}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\frac{198}{127}\\y=-\frac{73}{127}\end{matrix}\right.\)
Vậy hệ pt có nghiệm duy nhất là (\(\left(\frac{198}{127};-\frac{73}{127}\right)\)
b)
\(\left\{{}\begin{matrix}\left(\sqrt{5}+2\right)x+y=3-\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2.\left(\sqrt{5}+2\right)x+2y=6-2\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2(\sqrt{5}+2)x=6+2\sqrt{5}-6-2\sqrt{5}\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2\left(\sqrt{5}+2\right)x=0\\-x+2y=6-2\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\0+2y=6-2\sqrt{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\frac{2\left(3-\sqrt{5}\right)}{52}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3-\sqrt{5}\end{matrix}\right.\)
Vậy hệ pt có nghiệm duy nhất là \(\left(0;3-\sqrt{5}\right)\)
\(\left\{{}\begin{matrix}4x+5y=3\\x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4\left(5+3y\right)+5y=3\\x=5+3y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}20+12y+5y=3\\x=5+3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}20+17y=3\\x=5+3y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}17y=-17\\x=5+3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)
=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75
=>x=7; y=5
b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)
=>4x+9y=8 và -8x+3y=5
=>x=-1/4; y=1
c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)
=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5
=>2x-3y=-5,5 và 3x-2y=-4,5
=>x=-1/2; y=3/2
e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)
=>\(x=\sqrt{2};y=\sqrt{3}\)
a,\(\left\{{}\begin{matrix}-x+2y=6\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x+6y=18\left(1\right)\\10x-6y=10\left(2\right)\end{matrix}\right.\)
Cộng (1) và (2) => 7x=28
\(\Leftrightarrow\) x=4
thay x vào (1) ta có -4+2y=6
=> 2y=10
=>y=5
Vậy nghiệm của phương trình (x;y)=(4;5)
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{3}x+\dfrac{1}{4}y=2\\5x-y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\5y=15\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
a)
\(\left\{{}\begin{matrix}\left(\sqrt{2}+1\right)x+y=\sqrt{2}-1\\2x-\left(\sqrt{2}-1\right)y=2\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\\2x-\left(\sqrt{2}-1\right)y=2\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\\2x-\left(\sqrt{2}-1\right)\left(\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\right)=2\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right)x\\x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(\sqrt{2}-1\right)-\left(\sqrt{2}+1\right).1\\x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy hệ phương trình có tập nghiệm {1;-2}
b)
\(\left\{{}\begin{matrix}\sqrt{3}x-y=1\\5x+\sqrt{2}y=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}x-1\\5x+\sqrt{2}y=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}x-1\\5x+\sqrt{2}\left(\sqrt{3}x-1\right)=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}x-1\\x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\sqrt{3}.\left(\frac{3\sqrt{3}+2\sqrt{2}}{19}\right)-1\\x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{-10+2\sqrt{6}}{19}\\x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3\sqrt{3}+2\sqrt{2}}{19}\\y=\frac{-10+2\sqrt{6}}{19}\end{matrix}\right.\)
Vậy hệ phương trình có tập nghiệm \(\left\{\frac{3\sqrt{3}+2\sqrt{2}}{19};\frac{-10+2\sqrt{6}}{19}\right\}\)
c)
\(\left\{{}\begin{matrix}2x+y=5\\3x-2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=10\\3x-2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=13\\4x+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{13}{7}\\4.\frac{13}{7}+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{13}{7}\\y=\frac{9}{7}\end{matrix}\right.\)
Vậy hệ phương trình có tập nghiệm \(\left\{\frac{13}{7};\frac{9}{7}\right\}\)
a: \(\left\{{}\begin{matrix}\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\sqrt{15}x-2\sqrt{3}\cdot y=2\sqrt{15}\left(\sqrt{3}-1\right)\\2\sqrt{15}x+15y=21\sqrt{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2\sqrt{3}y-15y=2\sqrt{45}-2\sqrt{15}-21\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-2\sqrt{3}-15\right)=-15\sqrt{5}-2\sqrt{15}\\2\sqrt{3}\cdot x+3\sqrt{5}\cdot y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{15\sqrt{5}+2\sqrt{15}}{2\sqrt{3}+15}=\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}\cdot y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\sqrt{5}\\2\sqrt{3}x=21-3\sqrt{5}\cdot\sqrt{5}=21-15=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\sqrt{5}\\x=\dfrac{6}{2\sqrt{3}}=\sqrt{3}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}1,7x-2y=3,8\\2,1x+5y=0,4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}8,5x-10y=19\\4,2x+10y=0,8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}8,5x-10y+4,2x+10y=19,8\\2,1x+5y=0,4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12,7x=19,8\\2,1x+5y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{198}{127}\\5y=0,4-2,1x=-\dfrac{365}{127}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{198}{127}\\y=-\dfrac{73}{127}\end{matrix}\right.\)