K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2021

\(\left\{{}\begin{matrix}\left(x+1\right)\left(x^2+1\right)=y^3+1\\\left(y+1\right)\left(y^2+1\right)=z^3+1\\\left(z+1\right)\left(z^2+1\right)=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+x^2+x=y^3\left(1\right)\\y^3+y^2+y=z^3\\z^3+z^2+z=x^3\end{matrix}\right.\)

Giả sử \(x>y\Rightarrow x^3+x^2+x>y^3+y^2+y\)

\(\Rightarrow y^3>z^3\Leftrightarrow y>z\left(2\right)\)

\(\Rightarrow y^3+y^2+y>z^3+z^2+z\Rightarrow z>x\left(3\right)\)

Từ \(\left(2\right);\left(3\right)\Rightarrow y>x\) (Vô lí)

Giả sử \(x< y\Rightarrow x^3+x^2+x< y^3+y^2+y\)

\(\Rightarrow y^3< z^3\Leftrightarrow y< z\left(4\right)\)

\(\Rightarrow y^3+y^2+y< z^3+z^2+z\Rightarrow z< x\left(5\right)\)

Từ \(\left(4\right);\left(5\right)\Rightarrow y< x\) (Vô lí)

\(\Rightarrow x=y=z\)

\(\left(1\right)\Leftrightarrow x^3+x^2+x=x^3\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow x=y=z=0\) hoặc \(x=y=z=-1\)

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3
6 tháng 4 2021

ĐKXĐ : \(2\le x,y,z\le4\)

Từ hệ phương trình ta suy ra được

\(\Sigma x+\Sigma\sqrt{x-2}+\Sigma\sqrt{4-x}=\Sigma x^2-5\Sigma x+33\\ \Leftrightarrow\Sigma\left(x^2-6x+9\right)+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\\ \Leftrightarrow\Sigma\left(x-3\right)^2+6=\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\left(1\right)\)

Áp dụng bất đẳng thức \(\sqrt{A}+\sqrt{B}\le\sqrt{2\left(A+B\right)}\)

\(\Sigma\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\Sigma\sqrt{2\left(x-2+4-x\right)}=\Sigma2=6\)

\(\Rightarrow\Sigma\left(x-3\right)^2+6\le6\Rightarrow\Sigma\left(x-3\right)^2\le0\)

Mà \(\Sigma\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2=\left(y-3\right)^2=\left(z-3\right)^2=0\\ \Leftrightarrow x=y=z=3\)

Thay vào ta thấy thỏa mãn -> x=y=z=3 là nghiệm hpt

18 tháng 2 2018

Câu 1 :

Ta có :

\(\Delta=\left(m-1\right)^2-4.\left(2m-7\right)\)

\(=m^2-2m+1-8m+28\)

\(=m^2-10m+27>0\)

Do đó pt luôn có 2 nghiệm phân biệt

1)Giải hệ phương trình với \(x,y,z\in R\)\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)   2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tốa)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn...
Đọc tiếp

1)Giải hệ phương trình với \(x,y,z\in R\)

\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)   

2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tố

a)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)

b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)

3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn :

\(f\left(x^2\right)=f\left(x+y\right).f\left(x-y\right)+y^2,\forall x,y\in R\)

4)Cho đường tròn \(\left(I,r\right)\) nội tiếp \(\Delta ABC\).\(M\in\) đoạn \(BC\)\(\left(M\ne B,C\right)\).Gọi \(\left(I_1,r_1\right)\)là đường tròn nội tiếp \(\Delta AMC\).Đường thẳng song song \(BC\) tiếp xúc \(\left(I_1,r_1\right)\) cắt các cạnh \(AB,AC\) tại \(X,Y\).\(AM\) cắt \(XY\) tại \(N\).Gọi \(\left(I_2,r_2\right)\) là đường tròn nội tiếp \(\Delta AXN\).Chứng minh:

a)\(A,I,I_1,I_2\) cùng thuộc 1 đường tròn

b)\(r=r_1+r_2\)

0
14 tháng 11 2017

Đặt S=x+y;P=xy giải ra :V