K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2022

a, Thay m = 2 ta được 

\(\hept{\begin{cases}x+2y=1\\2x+y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+4y=2\\2x+y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)

b, Để hpt có nghiệm duy nhất khi \(\frac{1}{m}\ne\frac{m}{1}\Leftrightarrow m\ne1\)

5 tháng 10 2023

\(\left\{{}\begin{matrix}2x-y=1\\x-2y=-1\end{matrix}\right.\)

Ta có:

\(D=-4+1=-3\ne0\)

\(D_x=-2-1=-3\ne0\)

\(D_y=-2-1=-3\ne0\)

Vậy Hệ phương trình đã cho có 1 nghiệm duy nhất.

 

1 tháng 12 2021

\(\left\{{}\begin{matrix}-3x-2y=2\\-3x+12y=9\end{matrix}\right.\)

\(\Leftrightarrow-14y=-7\)

\(\Leftrightarrow y=2\left(1\right)\)

Thay (1) vào ptr đầu: \(3x+2\cdot2=-2\)

\(\Rightarrow x=-2\)

5 tháng 10 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}6x-9y=-15\\-6x+8y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-5\\-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5+33}{2}=14\\y=11\end{matrix}\right.\)

 

b: \(\left\{{}\begin{matrix}2x-3y=-5\\-3x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-9y=-15\\-6x+8y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-y=-11\\2x-3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=11\\x=\dfrac{-5+3y}{2}=\dfrac{-5+3\cdot11}{2}=14\end{matrix}\right.\)

a: Ta có: \(\left\{{}\begin{matrix}2x-10y=-7\\10x+11y=31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10x-50y=-35\\10x+10y=31\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-60y=-66\\2x-10y=-7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{10}\\2x=-7+10y=-7+11=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{11}{10}\end{matrix}\right.\)

1 tháng 2 2023

\(a,\left\{{}\begin{matrix}2x-y=1\\3x+2y=5\end{matrix}\right.\\ =>\left\{{}\begin{matrix}4x-2y=2\\3x+2y=5\end{matrix}\right.\\ =>\left\{{}\begin{matrix}7x=7\\2x-y=1\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=1\\2.1-y=1\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1;1\right)\)

\(b,\left\{{}\begin{matrix}4x+3y=-1\\3x-2y=2\end{matrix}\right.\\ =>\left\{{}\begin{matrix}4.2x+3.2y=-1.2\\3.3x-2.3y=2.3\end{matrix}\right.\\ =>\left\{{}\begin{matrix}8x+6y=-2\\9x-6y=6\end{matrix}\right.\\ =>\left\{{}\begin{matrix}17x=4\\3x-2y=2\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=\dfrac{4}{17}\\y=-\dfrac{11}{17}\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(\dfrac{4}{17};-\dfrac{11}{17}\right)\)

3:

a: u+v=14 và uv=40

=>u,v là nghiệm của pt là x^2-14x+40=0

=>x=4 hoặc x=10

=>(u,v)=(4;10) hoặc (u,v)=(10;4)

b: u+v=-7 và uv=12

=>u,v là các nghiệm của pt:

x^2+7x+12=0

=>x=-3 hoặc x=-4

=>(u,v)=(-3;-4) hoặc (u,v)=(-4;-3)

c; u+v=-5 và uv=-24

=>u,v  là các nghiệm của phương trình:

x^2+5x-24=0

=>x=-8 hoặc x=3

=>(u,v)=(-8;3) hoặc (u,v)=(3;-8)

31 tháng 12 2023

a: \(\sqrt{x^2+6x+9}=\sqrt{11+6\sqrt{2}}\)

=>\(\sqrt{\left(x+3\right)^2}=\sqrt{\left(3+\sqrt{2}\right)^2}\)

=>\(\left|x+3\right|=\left|3+\sqrt{2}\right|=3+\sqrt{2}\)

=>\(\left[{}\begin{matrix}x+3=3+\sqrt{2}\\x+3=-3-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-6-\sqrt{2}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}2x-y=4\\x+2y=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4x-2y=8\\x+2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-2y+x+2y=8-3\\2x-y=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x=5\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\cdot1-4=-2\end{matrix}\right.\)

5 tháng 3 2022

a, \(\left\{{}\begin{matrix}2x+2y=4\\2x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=-5\\x=2-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3\end{matrix}\right.\)

b, \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\x+y=10\end{matrix}\right.\)Theo tc dãy tỉ số bằng nhau 

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{10}{5}=2\Rightarrow x=4;y=6\)

5 tháng 3 2022

a.\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=6\\2x-3y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=15\\2x-3y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\2.3-3y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

b.\(\Leftrightarrow\left\{{}\begin{matrix}3x=2y\\x+y-10=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\x+y-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2x+2y=20\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=20\\3x-2y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\3.4-2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

 

5 tháng 10 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}-\dfrac{2}{y}=2\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\left(x,y\ne0\right)\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{5}{y}=3\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{5}{3}\\\dfrac{2}{x}+\dfrac{9}{5}=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=-\dfrac{5}{3}\end{matrix}\right.\)

\(b,\Leftrightarrow\left\{{}\begin{matrix}\dfrac{60}{x}-\dfrac{28}{y}=36\\\dfrac{60}{x}-\dfrac{135}{y}=525\end{matrix}\right.\left(x,y\ne0\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{9}{y}=35\\-\dfrac{163}{y}=489\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}-27=35\\y=-\dfrac{1}{3}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{31}\\y=-\dfrac{1}{3}\end{matrix}\right.\)

a: Ta có: \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}-\dfrac{2}{y}=2\\\dfrac{2}{x}-\dfrac{3}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=-3\\\dfrac{1}{x}-\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-1}{3}\\\dfrac{1}{x}=1+\dfrac{1}{y}=1+\left(-3\right)=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{3}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Câu 1: 

a) Ta có: \(x^4+3x^2-4=0\)

\(\Leftrightarrow x^4+4x^2-x^2-4=0\)

\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)

mà \(x^2+4>0\forall x\)

nên \(x^2-1=0\)

\(\Leftrightarrow x^2=1\)

hay \(x\in\left\{1;-1\right\}\)

Vậy: S={1;-1}

Câu 1: 

b) Ta có: \(\left\{{}\begin{matrix}x+2y=5\\x-5y=-9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7y=14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=1\end{matrix}\right.\)

Vậy: (x,y)=(1;2)