Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\dfrac{x+y}{5}=\dfrac{x-y}{3}\\\dfrac{x}{4}=\dfrac{y}{2}+1\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}3x+3y=5x-5y\\x=2y+4\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}2x-8y=0\\x-2y=4\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x-4y=0\\x-2y=4\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
Bài 2:
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(2x^2=-x+3\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2-2x+3x-3=0\)
\(\Leftrightarrow2x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Thay x=1 vào hàm số \(y=2x^2\), ta được:
\(y=2\cdot1^2=2\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số \(y=2x^2\), ta được:
\(y=2\cdot\left(-\dfrac{3}{2}\right)^2=2\cdot\dfrac{9}{4}=\dfrac{9}{2}\)
Vậy: Tọa độ giao điểm của (p) và (D) là (1;2) và \(\left(-\dfrac{3}{2};\dfrac{9}{2}\right)\)
Giải ra được y = 2 x =3 nha muốn biết cách giải ib mình dài lắm
Chúc bạn tìm ra lời giải !!!
\(\left(1\right)\Leftrightarrow\frac{x}{y}-\frac{y}{x}=\frac{5}{6}\Leftrightarrow\frac{x^2-y^2}{xy}=\frac{5}{6}\)
\(\Leftrightarrow6x^2-6y^2=5xy\)(3)
\(\left(2\right)\Leftrightarrow6x^2-6y^2=30\)(4)
Lấy (3) - (4) được 5xy - 30 = 0 <=> xy = 6
Thay vào (3) sẽ tìm đc hiệu x^2 và y^2 đưa về hệ ,auto làm nốt
Trả lời:
theo đề bài: x^2+y^2 = -1
-> phương trình vô nghiệm do x^2+y^2 >=0 nên không thể tìm được x,y thỏa điều kiện đề bài.