K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

Lấy (1) cộng (2), ta có:

\(\left(2a+1\right)x=a^2+4a+5\)\(\Rightarrow x=\dfrac{a^2+4a+5}{2a+1}\)

Thay vào (1): \(\dfrac{\left(a^2+4a+5\right)\left(a+1\right)-10a-5}{2a+1}.\dfrac{1}{a}\)\(=\dfrac{a^3+5a^2-a}{2a+1}.\dfrac{1}{a}=\dfrac{a^2+5a-1}{2a+1}\)

Để x,y nguyên thì \(\left\{{}\begin{matrix}a^2+4a+5⋮2a+1\\a^2+5a-1⋮2a+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a\left(a+2\right)+2a+5⋮2a+1\\a^2+2a+3a-1⋮2a+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}4⋮2a+1\\a+2⋮2a+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}4⋮2a+1\\3⋮2a+1\end{matrix}\right.\)\(\Rightarrow2a+1\in\left\{\pm1\right\}\)\(\Rightarrow a\in\left\{-1;0\right\}\)

Vậy với a=-1;0 thì hpt có nghiệm (x;y) với x,y thuộc Z.

9 tháng 6 2020

\(\hept{\begin{cases}3x-y=2m+3\\x+2y=3m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}6x-2y=4m+6\\x+2y=3m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=m+1\\y=m\end{cases}}\)khi đó: \(^{x^2+y^2=5\Leftrightarrow2m^2+2m+1=5\Leftrightarrow2m^2+2m-4=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}}\)

12 tháng 4 2018

Hỏi đáp Toán

5 tháng 4 2019

a)

\(\Delta'=\left(-2\right)^2-\left(4m-m^2\right)=4-4m+m^2=\left(m-2\right)^2\ge0\)

\(\Delta'\ge0\) nên phương trình có nghiệm với mọi m

b) Theo Vi-ét có

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=4m-m^2\end{matrix}\right.\)

Lấy phương trình đầu của hệ, kết hợp với đề bài, có

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_2=x_1^2-5x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_2=x_1^2-5x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_1^2-5x_1=4-x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x^2-4x_1+4=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left(x_1-2\right)^2=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left[{}\begin{matrix}x_1=2+2\sqrt{2}\\x_1=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=2+2\sqrt{2}\\x_2=2+2\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x_1=2-2\sqrt{2}\\x_2=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

Ta có

\(x_1x_2=4m-m^2\)

Đã tìm được \(x_1\)\(x_2\) , thay vào để tìm m