Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(m-1\right)x+y=2\)\(\Rightarrow y=2-\left(m-1\right)x\) ( 1 )
Thay vào PT dưới có : \(mx+2-\left(m-1\right)x=m+1\)
\(\Rightarrow x+1=m\)( pt này luôn có nghiệm duy nhất )
\(\Rightarrow x=m-1\), thay vào ( 1 ) ta có :
\(y=2-\left(m-1\right)^2\)
Ta có : \(x+y=-4\) \(\Leftrightarrow m-1+2-\left(m-1\right)^2=-4\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)-6=0\)
\(\left[\left(m-1\right)^2-3\left(m-1\right)\right]+\left[2.\left(m-1\right)-6\right]=0\)
\(\Rightarrow\left[\left(m-1\right)-3\right].\left[\left(m-1\right)+2\right]=0\)
\(\Rightarrow\hept{\begin{cases}m-1=3\\m-1=-2\end{cases}}\Rightarrow\hept{\begin{cases}m=4\\m=-1\end{cases}}\)
hệ phương trình có 1 nghiệm duy nhất khi a/a' khác b/b'
=>(m+5)/m khác 3/2
=>2m+10 khác 3m
=>m khác 10
HPT có nghiệm duy nhất \(\Leftrightarrow\frac{m+5}{m}\ne\frac{3}{2}\Leftrightarrow m\ne10\)
nếu không được dùng công thức như trên, ta có thể làm cụ thể
PT tương đương với :
\(\hept{\begin{cases}2\left(m+5\right)x+6y=2\\3mx+6y=-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(10-m\right)=14\\y=\frac{-4-mx}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{14}{10-m}\\y=\frac{-4-mx}{2}\end{cases}}\)
Để HPT có nghiệm duy nhất thì \(10-m\ne0\Leftrightarrow m\ne10\)
sử dụng phương pháp cộng đại số ta có:
mx+5x+3y+mx+2y=-3
\(\Leftrightarrow\)2mx+5x+3y
\(\Leftrightarrow\)2mx+5x+5y+3=0
\(\Leftrightarrow\)x(2m+5)=-5y-3
ta biện luận hpt trên:
+Với m\(\ne\)\(\frac{-5}{2}\)rút x từ hpt ta đc x=\(\frac{1-3y}{m+5}\)
thay vào pt2 ta đc y=\(\frac{5m+20}{m-10}\)\(\Rightarrow\)
x=\(\frac{15m+59}{\left(10-m\right)\left(m+5\right)}\)(đây là n0 duy nhất của hpt)
+Với m=\(\frac{-5}{2}\)hpt có vô số nghiệm (x;\(\frac{-3}{5}\))
Vậy.......
\(b,\hept{\begin{cases}x-my=3\left(1\right)\\mx-4y=m+4\left(2\right)\end{cases}}\)
Từ \(\left(1\right)\Rightarrow x=my+3\)
Thay \(x\)vào \(\left(2\right):\left(m^2-4\right)y=4-2m\left(#\right)\)
- Nếu \(m^2-4=0\Leftrightarrow\left(m-2\right)\left(m+2\right)=0\Leftrightarrow\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)
Xét từng giá trị của m sau:
- \(m=2:\left(#\right)0y=0\)(Luôn đúng)
Hệ có vô số nghiệm: \(\hept{\begin{cases}x=2y+3\\y\inℝ\end{cases}}\)
- \(m=-2\)\(\left(#\right)\Leftrightarrow0y=8\left(vn\right)\)
Vậy hệ vô nghiệm
- Nếu \(m\ne\pm2\)ta có: \(\left(#\right)\Leftrightarrow y=\frac{4-2m}{m^2-4}\Leftrightarrow y=-\frac{2}{m+2}\)
Ta tìm được \(x=\frac{m+6}{m+2}\)
Hệ có nghiệm: \(\left(x,y\right)=\left(\frac{m+6}{m+2};\frac{-2}{m+2}\right)\)
Vậy: \(m=2\)thì hệ có vô số nghiệm: \(\hept{\begin{cases}x=2y+3\\y\in R\end{cases}}\)
\(m=-2\)hệ vô nghiệm
\(m\ne\pm2\)hệ có nghiệm duy nhất: \(\left(x,y\right)=\left(\frac{m+6}{m+2};\frac{-2}{m+2}\right)\)
\(\hept{\begin{cases}mx+y=1\left(1\right)\\3x-\left(m+1\right)y=-3\left(2\right)\end{cases}}\).
Từ phương trình (1) suy ra \(y=1-mx\)
Thay vào phương trình (2),ta có: \(3x-\left(m+1\right)\left(1-mx\right)=-3\)
\(\Leftrightarrow\left(m+1\right)\left(1-mx\right)=3x+3\)
\(\Leftrightarrow-m^3x-mx+m=3x+2\)
\(\Leftrightarrow-m\left(m^2x+x-1\right)-3x=2\)
Với m = 0 phương trình có nghiệm duy nhất: \(x=-\frac{2}{3}\)
Xét tiếp tục với \(m\ne0\) nhé bạn.
Thôi chết giải nhầm.
Giải
Từ phương trình thứ nhất của hệ suy ra \(y=1-mx\)
Thay vào phương trình thức hai của hệ được: \(3x-\left(m+1\right)\left(1-mx\right)=-3\)
\(\Leftrightarrow\left(m+1\right)\left(1-mx\right)=3x+3\)
\(\Leftrightarrow m\left(1-mx\right)+1\left(1-mx\right)=3x+3\)
\(\Leftrightarrow-m^2x-mx+m=3x+2\)
Với m = 0 thì \(PT\Leftrightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)
Với \(m\ne0\) .....giải tiếp ....
^^