Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải hệ phương trình sau
\(\hept{\begin{cases}x+2y+3z=0\\x-y+5z=4\\x+8y-z=6\end{cases}}\)
Giải hệ phuong trình trên máy tính ta có :
=> X vô nghiệm
Vậy x vô nghiệm
Study well
\(\hept{\begin{cases}x+2y+3z=0\\x-y+5z=4\\x+8y-z=6\end{cases}}\)
Bấm máy tính
=> Vô nghiệm
câu a)
nhân cả 3 phương trình
ta được
\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)
Vế trái là 1 số chính phương nên Vp cũng là số chính phương
6 không phải là số chính phương nên
\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6
lập bảng
đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa
câu b)
từ hpt =>5y+3=11z+7
<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R
y nguyên dương nên (11z+4)thuộc bội(5) và z_min
=> z=1
=> y=3
=> x =18 (t/m)
câu c)
qua pt (1) =>x=20-2y-3z
thay vao 2) <=> y+5z=23
y;z là nguyên dương mà 5z chia hêt cho 5
=> z={1;2;3;4}
=> y={18;13;8;3}
=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé
chọn x=2; y=3; z=4 (t/m)
Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)
Bài theo tôi tương đối đơn giản, tôi sẽ làm ngắn gọn thôi.
Ta viết hệ phương trình trên thành :
\(\left\{{}\begin{matrix}\left(a-2\right)^3=1-3a\left(1\right)\\\left(b-1\right)^3=2-3b\left(2\right)\end{matrix}\right.\)
Lấy (1) trừ (2) ta được :
\(\left(a-2\right)^3-\left(b-1\right)^3=3-3\left(a-b\right)\\ \Rightarrow\left(a-b-1\right)\left[\left(a-2\right)^2+\left(a-2\right)\left(b-1\right)+\left(b-1\right)^2+3\right]=0\)
\(\Rightarrow a-b=1\Rightarrow\left(a-b\right)^{2014}=1\\ Vậy...........\)
Nhầm nhé, của câu trên.